会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Face detection using division-generated haar-like features for illumination invariance
    • 使用分割生成的哈尔状特征进行面部检测,用于照明不变性
    • US08971628B2
    • 2015-03-03
    • US12843805
    • 2010-07-26
    • George SusanuDan FilipMihnea Gangea
    • George SusanuDan FilipMihnea Gangea
    • G06K9/00G06K9/46
    • G06K9/00228G06K9/4642
    • Faces in images are quickly detected with minimal memory resource usage. Instead of calculating a Haar-like feature value by subtracting the average pixel intensity value in one rectangular region from the average pixel intensity value in another, adjacent rectangular region, a face-detection system calculates that Haar-like feature value by dividing the average pixel intensity value in one such rectangular region by the average pixel intensity value in the other such adjacent rectangular region. Thus, each Haar-like value is calculated as a ratio of average pixel intensity values rather than as a difference between such average pixel intensity values. The feature values are calculated using this ratio-based technique both during the machine-learning procedure, in which the numerical ranges for features in known face-containing images are learned based on labeled training data, and during the classifier-applying procedure, in which an unlabeled image's feature values are calculated and compared to the previously machine-learned numerical ranges.
    • 用最少的内存资源使用快速检测图像中的脸部。 代替通过从另一个相邻矩形区域中的平均像素强度值减去一个矩形区域中的平均像素强度值来计算哈尔状特征值,面部检测系统通过将平均像素 一个这样的矩形区域中的强度值乘以另一个这样的相邻矩形区域中的平均像素强度值。 因此,每个Haar样值被计算为平均像素强度值的比率而不是作为这样的平均像素强度值之间的差。 在机器学习过程中,使用这种基于比例的技术来计算特征值,其中基于标记的训练数据学习已知的含有脸谱的图像中的特征的数值范围,并且在分类器应用程序期间, 计算未标记图像的特征值并将其与之前的机器学习数值范围进行比较。
    • 2. 发明申请
    • Face Detection Using Division-Generated Haar-Like Features For Illumination Invariance
    • 用于照明不变性的分裂Haar样特征的人脸检测
    • US20120019683A1
    • 2012-01-26
    • US12843805
    • 2010-07-26
    • George SusanuDan FilipMihnea Gangea
    • George SusanuDan FilipMihnea Gangea
    • G06K9/46H04N5/228
    • G06K9/00228G06K9/4642
    • Faces in images are quickly detected with minimal memory resource usage. Instead of calculating a Haar-like feature value by subtracting the average pixel intensity value in one rectangular region from the average pixel intensity value in another, adjacent rectangular region, a face-detection system calculates that Haar-like feature value by dividing the average pixel intensity value in one such rectangular region by the average pixel intensity value in the other such adjacent rectangular region. Thus, each Haar-like value is calculated as a ratio of average pixel intensity values rather than as a difference between such average pixel intensity values. The feature values are calculated using this ratio-based technique both during the machine-learning procedure, in which the numerical ranges for features in known face-containing images are learned based on labeled training data, and during the classifier-applying procedure, in which an unlabeled image's feature values are calculated and compared to the previously machine-learned numerical ranges.
    • 用最少的内存资源使用快速检测图像中的脸部。 代替通过从另一个相邻矩形区域中的平均像素强度值减去一个矩形区域中的平均像素强度值来计算哈尔状特征值,面部检测系统通过将平均像素 一个这样的矩形区域中的强度值乘以另一个这样的相邻矩形区域中的平均像素强度值。 因此,每个Haar样值被计算为平均像素强度值的比率而不是作为这样的平均像素强度值之间的差。 在机器学习过程中,使用这种基于比例的技术来计算特征值,其中基于标记的训练数据学习已知的含有脸谱的图像中的特征的数值范围,并且在分类器应用程序期间, 计算未标记图像的特征值并将其与之前的机器学习数值范围进行比较。
    • 9. 发明授权
    • Methods and apparatuses for half-face detection
    • 用于半脸部检测的方法和装置
    • US08605955B2
    • 2013-12-10
    • US12825280
    • 2010-06-28
    • Stefan PetrescuMihnea Gangea
    • Stefan PetrescuMihnea Gangea
    • G06K9/62
    • G06K9/00248G06K9/4614G06K9/6256H04N5/23219
    • Classifier chains are used to determine quickly and accurately if a window or sub-window of an image contains a right face, a left face, a full face, or does not contain a face. After acquiring a digital image, an integral image is calculated based on the acquired digital image. Left-face classifiers are applied to the integral image to determine the probability that the window contains a left face. Right-face classifiers are applied to the integral image to determine the probability that the window contains a right face. If the probability of the window containing a right face and a left face are both greater than threshold values, then it is determined that the window contains a full face. Alternatively, if only one of the probabilities exceeds a threshold value, then it may be determined that the window contains only a left face or a right face.
    • 分类器链用于快速准确地确定图像的窗口或子窗口是否包含右脸,左脸,全脸或不包含脸部。 在获取数字图像之后,基于获取的数字图像计算积分图像。 左面分类器应用于积分图像以确定窗口包含左脸的概率。 将右脸分类器应用于积分图像,以确定窗口包含右脸的概率。 如果包含右脸和左脸的窗口的概率都大于阈值,则确定该窗口包含全脸。 或者,如果只有一个概率超过阈值,则可以确定窗口仅包含左脸或右脸。