会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Methods and Apparatus for Characterising Cells and Treatments
    • 用于表征细胞和治疗的方法和装置
    • US20090034822A1
    • 2009-02-05
    • US12130850
    • 2008-05-30
    • Daniel A. ColemanGe CongAibing RaoEugeni A. Vaisberg
    • Daniel A. ColemanGe CongAibing RaoEugeni A. Vaisberg
    • G06K9/00
    • G06K9/0014G06T7/0012G06T2207/30024
    • Methods, data processing apparatus and computer program products for characterising cells and the affect of treatments administered to cells are disclosed. In particular methods of identifying bi-nuclear cells are described which include capturing an image of a plurality of marked cells and processing image to obtain features of the plurality of cells. The features are analyzed to determine whether the feature is indicative of bi-nuclear cells. Those cells for which the first feature is indicative of bi-nuclear cells are identified as being bi-nuclear. Three algorithms in particular are described. A first algorithm can be used to determine the number of nuclei in an image of a nuclear component by determining the number of concave regions within the outline of the image. A second algorithm uses a measure of the amount of cytoplasmic material between a pair of nuclei to identify bi-nuclear cells. A third algorithm uses the statistics of the spatial distribution of objects to identify isolated pairs of nuclei which can be considered to be from the same cell.
    • 公开了用于表征细胞的方法,数据处理装置和计算机程序产品以及对细胞施用的治疗的影响。 描述了特定的识别双核细胞的方法,其包括捕获多个标记细胞的图像和处理图像以获得多个细胞的特征。 分析特征以确定特征是否表示双核细胞。 第一特征指示双核细胞的那些细胞被鉴定为双核的。 具体描述三种算法。 可以使用第一算法来确定图像轮廓内的凹区域的数量来确定核分量的图像中的核的数量。 第二种算法使用一对核之间的细胞质材料的量的量度来识别双核细胞。 第三种算法使用对象的空间分布的统计来识别可以被认为来自相同小区的孤立的核对。
    • 5. 发明授权
    • Ploidy classification method
    • 倍性分类法
    • US07218764B2
    • 2007-05-15
    • US11097451
    • 2005-04-01
    • Eugeni A. VaisbergDaniel A. Coleman
    • Eugeni A. VaisbergDaniel A. Coleman
    • G06K9/00
    • G01N33/5005
    • Image analysis methods and apparatus are used for determination of the ploidy of cells. The methods may involve segmenting an image to identify one or more discrete regions occupied by cells or nuclei, determining the presence of a particular ploidy indicator feature within the region(s), and providing a value of the indicator feature to a model that classifies cells' ploidy on the basis of the indicator feature. In some embodiments, the indicator feature is a level of DNA in a cell. In certain embodiments, the method further comprises treating one or more cells with a marker that highlights the ploidy indicator feature. In certain embodiments, the cells are treated prior to producing one or more images of the one or more cells. In certain embodiments, the ploidy indicator feature comprises DNA and the marker co-locates with DNA and provides a signal that is captured in the image. In certain embodiments, the signal comprises a fluorescent emission.
    • 图像分析方法和装置用于确定细胞的倍性。 所述方法可以包括分割图像以识别由单元或核占据的一个或多个离散区域,确定区域内特定倍性指示符特征的存在,以及将指示符特征的值提供给将细胞分类的模型 在指标特征的基础上进行倍性。 在一些实施方案中,指示剂特征是细胞中的DNA水平。 在某些实施方案中,所述方法还包括用突出所述倍性指示物特征的标记物处理一个或多个细胞。 在某些实施方案中,在产生一个或多个细胞的一个或多个图像之前处理细胞。 在某些实施方案中,倍性指示物特征包括DNA,并且标记物与DNA共定位并提供在图像中捕获的信号。 在某些实施例中,信号包括荧光发射。
    • 8. 发明授权
    • Database system for predictive cellular bioinformatics
    • 用于预测细胞生物信息学的数据库系统
    • US06615141B1
    • 2003-09-02
    • US09718704
    • 2000-11-21
    • James H. SabryCynthia L. AdamsEugeni A. VaisbergAnne M. Crompton
    • James H. SabryCynthia L. AdamsEugeni A. VaisbergAnne M. Crompton
    • G01N3348
    • G06K9/00127C12M41/36C12M41/46G06F19/24G06T7/0012G06T2207/30024Y10S707/99933Y10S707/99934Y10S707/99936
    • A system for acquiring knowledge from cellular information. The system has a database comprising a database management module (“DBMS”). The system also has a variety of modules, including a population module coupled to the DBMS for categorizing and storing a plurality of features (e.g., cell size, distance between cells, cell population, cell type) from an image acquisition device into the database. The system has a translation module coupled to the DBMS for defining a descriptor from a set of selected features from the plurality of features. In a specific embodiment, the descriptor is for a known or unknown compound, e.g., drug. A prediction module is coupled to the DBMS for selecting one of a plurality of a descriptors from known and unknown compounds from the database based upon a selected descriptor from a selected compound. The selected compound may be one that is useful for treatment of human beings or the like.
    • 用于从蜂窝信息获取知识的系统。 该系统具有包括数据库管理模块(“DBMS”)的数据库。 该系统还具有各种模块,包括耦合到DBMS的群模块,用于从图像采集设备将多个特征(例如,小区大小,小区之间的距离,小区群,小区类型)分类和存储到数据库中。 该系统具有耦合到DBMS的翻译模块,用于从多个特征的一组选定特征中定义描述符。 在具体实施方案中,描述符是用于已知或未知的化合物,例如药物。 预测模块耦合到DBMS,用于基于来自所选化合物的所选择的描述符从数据库中选择来自已知和未知化合物的多个描述符之一。 所选择的化合物可以是可用于治疗人类等的化合物。
    • 9. 发明授权
    • Characterizing biological stimuli by response curves
    • 通过响应曲线表征生物刺激
    • US07657076B2
    • 2010-02-02
    • US11186143
    • 2005-07-20
    • Eugeni A. VaisbergDonald R. OestreicherCynthia L. Adams
    • Eugeni A. VaisbergDonald R. OestreicherCynthia L. Adams
    • G06K9/00G06K9/20G06K9/36G06F19/00
    • G06K9/6253G06F19/70G06K9/00127
    • A method for generating stimulus response curves (e.g., dose response curves) shows how the phenotype of one or more cells change in response to varying levels of the stimulus. Each “point” on the curve represents quantitative phenotype for cell(s) at a particular level of stimulus (e.g., dose of a therapeutic). The quantitative phenotypes are multivariate phenotypic representations of the cell(s). They include various features of the cell(s) obtained by image analysis. Such features often include basic parameters obtained from images (e.g., cell shape, nucleus area, Golgi texture) and/or biological characterizations derived from the basic parameters (e.g., cell cycle state, mitotic index, etc.). The stimulus response curves may be compared to allow classification of stimuli and identify subtle differences in related stimuli. To facilitate the comparison, it may be desirable to present the response curves in a principal component space.
    • 用于产生刺激响应曲线(例如,剂量反应曲线)的方法示出了一种或多种细胞的表型如何响应于刺激的不同水平而改变。 曲线上的每个“点”表示在特定刺激水平(例如治疗剂的剂量)下的细胞的定量表型。 定量表型是细胞的多变量表型表达。 它们包括通过图像分析获得的细胞的各种特征。 这些特征通常包括从基本参数(例如细胞周期状态,有丝分裂指数等)导出的图像(例如,细胞形状,细胞核区域,高尔基体织构)和/或生物学表征获得的基本参数。 可以比较刺激反应曲线以允许刺激分类并识别相​​关刺激的微妙差异。 为了便于比较,可能期望在主要分量空间中呈现响应曲线。
    • 10. 发明授权
    • Characterizing biological stimuli by response curves
    • 通过响应曲线表征生物刺激
    • US07246012B2
    • 2007-07-17
    • US10892450
    • 2004-07-16
    • Vadim KutsyyDaniel A. ColemanEugeni A. Vaisberg
    • Vadim KutsyyDaniel A. ColemanEugeni A. Vaisberg
    • G06K9/00G01N33/48
    • G06K9/6274G06K9/00147G06K9/00536
    • A method for calculating distances between stimulus response curves (e.g., dose response curves) allows classification of stimuli. The response curves show how the phenotype of one or more cells changes in response to varying levels of the stimulus. Each “point” on the curve represents quantitative phenotype or signature for cell(s) at a particular level of stimulus (e.g., dose of a therapeutic). The signatures are multivariate phenotypic representations of the cell(s). They include various features of the cell(s) obtained by image analysis. To facilitate the comparison of stimuli, distances between points on the response curves are calculated. First, the response curves may be aligned on a coordinate representing a separate distance, r, from a common point of negative control (e.g., the point where no stimulus is applied). Integration on r may be used to compute the distance between two response curves. The distance between response curves is used to classify stimuli.
    • 用于计算刺激响应曲线(例如,剂量响应曲线)之间的距离的方法允许对刺激进行分类。 响应曲线显示了一种或多种细胞的表型如何响应刺激的不同水平而改变。 曲线上的每个“点”表示特定刺激水平(例如,治疗剂的剂量)的细胞的定量表型或特征。 签名是细胞的多变量表型表达。 它们包括通过图像分析获得的细胞的各种特征。 为了促进刺激的比较,计算响应曲线上的点之间的距离。 首先,响应曲线可以在表示来自负控制的公共点(例如,不施加刺激的点)的单独距离r的坐标上对准。 可以使用r上的积分来计算两个响应曲线之间的距离。 响应曲线之间的距离用于对刺激进行分类。