会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Neural network apparatus
    • 神经网络装置
    • US5283838A
    • 1994-02-01
    • US685596
    • 1991-04-15
    • Fumio TogawaToru UedaTakashi AramakiYasushi Ishizuka
    • Fumio TogawaToru UedaTakashi AramakiYasushi Ishizuka
    • G06G7/60G06F15/18G06K9/66G06N3/08G06N3/10G06N99/00G11C11/54G06K9/00
    • G06K9/6272G06N3/10
    • When performing learning for a neural network, a plurality of learning vectors which belong to an arbitrary category are used, and self-organization learning in the category is carried out. As a result, the plurality of learning vectors which belong to the category are automatically clustered, and the contents of weight vectors in the neural network are set to representative vectors which exhibit common features of the learning vectors of each cluster. Then, teacher-supervised learning is carried out for the neural network, using the thus set contents of the weight vectors as initial values thereof. In the learning process, an initial value of each weight vector is set to the representative vector of each cluster obtained by clustering. Therefore, the number of calculations required until the teacher-supervised learning is converged is greatly reduced.
    • 当对神经网络进行学习时,使用属于任意类别的多个学习向量,并且执行该类别中的自组织学习。 结果,属于该类别的多个学习向量被自动聚类,将神经网络中权重向量的内容设置为表示每个簇的学习向量的共同特征的代表向量。 然后,对神经网络进行教师监督学习,使用这样设定的权重向量的内容作为其初始值。 在学习过程中,将每个权重向量的初始值设置为通过聚类获得的每个簇的代表向量。 因此,在教师监督学习融合之前所需的计算量大大减少。
    • 5. 发明授权
    • Recognizing apparatus
    • 识别装置
    • US5119438A
    • 1992-06-02
    • US491039
    • 1990-03-09
    • Toru UedaYasushi IshizukaFumio Togawa
    • Toru UedaYasushi IshizukaFumio Togawa
    • G06K9/66G06F15/18G06K9/62G06K9/68G06N3/00G06N99/00G06T7/00
    • G06K9/6857G06K9/6227G06K9/6807
    • A recognizing apparatus is provided for recognizing a class to which an inputted characteristic pattern belongs from among a plurality of classes to be discriminated using a neural network. The classes are classified into a plurality of categories. The apparatus includes a network selecting portion for selecting a category to which the inputted characteristic pattern belongs and for selecting a neural network for use in discriminating the class to which the inputted characteristic pattern belongs in the selected category. The apparatus further includes a network memory portion, a network setting portion and a details discriminating portion. The network memory portion stores structures of a plurality of neural networks which have finished learning for respective categories, weights of the neural networks set by the learning and a plurality of discriminating algorithms to be used when the classes are discriminated by the neural networks. The network setting portion sets the structure and weights of a neural network selected by the network selecting portion and a discriminating alogrithm appropriate to the selected category. The details discriminating portion recognizes the class to which the inputted characteristic pattern belongs by performing the details discriminating operation using the neural network set by the neural network setting portion.
    • 提供一种识别装置,用于使用神经网络识别要被区分的多个类别中输入的特征模式所属的类别。 这些课程分为多个类别。 该装置包括网络选择部分,用于选择输入的特征模式所属的类别,并用于选择神经网络以用于区分所选类别中输入的特征模式所属的类别。 该装置还包括网络存储器部分,网络设置部分和细节鉴别部分。 网络存储器部分存储已经完成各种类别的学习的多个神经网络的结构,通过学习设置的神经网络的权重以及当神经网络识别类时要使用的多个鉴别算法。 网络设置部分设置由网络选择部分选择的神经网络的结构和权重以及适合于所选类别的识别算法。 细节识别部分通过使用由神经网络设置部分设置的神经网络执行细节识别操作来识别所输入的特征模式所属的类别。
    • 6. 发明授权
    • Neural network learning apparatus and method
    • 神经网络学习装置及方法
    • US5276769A
    • 1994-01-04
    • US924585
    • 1992-08-06
    • Toru UedaYasushi IshizukaFumio Togawa
    • Toru UedaYasushi IshizukaFumio Togawa
    • G06K9/66G06N3/08G06F15/18
    • G06K9/6272G06N3/08
    • A learning apparatus for use in a neural network system which has a plurality of classes representing different meanings. The learning apparatus is provided for learning a number of different patterns, inputted by input vectors, and classified in different classes. The learning apparatus is constructed by a computer and it includes a section for producing a plurality of output vectors representing different classes in response to an input vector, a section for obtaining a first largest output vector of all the output vectors, a section for obtaining a second largest output vector of all the output vectors, and a section for setting predetermined weights to the first and second largest output vectors, respectively, such that the first largest output vector is made larger, and the second largest output vector is made smaller. Furthermore, a section for determining a ratio of the weighted first and second largest output vectors, respectively, is included. If the determined ratio is smaller than a predetermined value, the weighted first and second largest output vectors are further weighted to be made further larger and smaller, respectively.
    • 一种用于神经网络系统的学习装置,其具有表示不同含义的多个类别。 提供学习装置,用于学习由输入向量输入并分类为不同类别的多个不同模式。 学习装置由计算机构成,它包括一个部分,用于响应于输入向量产生表示不同类别的多个输出向量,用于获得所有输出向量的第一最大输出向量的部分, 所有输出向量的第二大输出向量,以及用于分别对第一和第二最大输出向量设置预定权重的部分,使得第一最大输出向量变大,并且使第二大输出向量更小。 此外,包括分别用于确定加权的第一和第二最大输出向量的比率的部分。 如果确定的比率小于预定值,则加权的第一和第二最大输出向量进一步被加权以进一步越来越大。