会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Training of autonomous robots
    • 自主机器人训练
    • US06760645B2
    • 2004-07-06
    • US10134909
    • 2002-04-29
    • Frédéric KaplanPierre-Yves Oudeyer
    • Frédéric KaplanPierre-Yves Oudeyer
    • G05B1900
    • A63H11/00A63H2200/00
    • A clicker-training technique developed for animal training is adapted for training robots, notably autonomous animal-like robots. In this robot-training method, a behaviour (for example, (DIG)) is broken down into smaller achievable responses ((SIT)-(HELLO)-(DIG)) that will eventually lead to the desired final behaviour. The robot is guided progressively to the correct behaviour through the use, normally the repeated use, of a secondary reinforcer. When the correct behaviour has been achieved, a primary reinforcer is applied so that the desired behaviour can be “captured”. This method can be used for training a robot to perform, on command, rare behaviours or a sequence of behaviours (typically actions). This method can also be used to ensure that a robot is focusing its attention upon a desired object.
    • 针对动物训练开发的点击训练技术适用于训练机器人,特别是自主动物类机器人。 在这种机器人训练方法中,行为(例如,(DIG))被分解成较小的可实现的响应((SIT) - (HELLO) - (DIG)),这将最终导致期望的最终行为。 机器人通过次级加强件的使用(通常是重复使用)逐步引导到正确的行为。 当已经实现正确的行为时,应用主加强件,以便可以“捕获”所需的行为。 这种方法可以用于训练机器人来执行命令,罕见行为或一系列行为(通常是动作)。 该方法也可用于确保机器人将注意力集中在所需物体上。
    • 2. 发明申请
    • Automated Action-Selection System and Method , and Application Thereof to Training Prediction Machines and Driving the Development of Self-Developing Devices
    • 自动化行动选择系统及方法及其应用,用于培训预测机器,推动自主研发设备的发展
    • US20080319929A1
    • 2008-12-25
    • US11658683
    • 2005-07-26
    • Frederic KaplanPierre-Yves Oudeyer
    • Frederic KaplanPierre-Yves Oudeyer
    • G06F15/18
    • G06N3/004
    • In order to promote efficient learning of relationships inherent in a system or setup S described by system-state and context parameters, the next action to take, affecting the setup, is determined based on the knowledge gain expected to result from this action. Knowledge-gain is assessed “locally” by comparing the value of a knowledge-indicator parameter after the action with the value of this indicator on one or more previous occasions when the system-state/context parameter(s) and action variable(s)=had similar values to the current ones. Preferably the “level of knowledge” is assessed based on the accuracy of predictions made by a prediction module. This technique can be applied to train a prediction machine by causing it to participate in the selection of a sequence of actions. This technique can also be applied for managing development of a self-developing device or system, the self-developing device or system performing a sequence of actions selected according to the action-selection technique.
    • 为了促进由系统状态和上下文参数描述的系统或设备S固有的关系的有效学习,基于预期从该动作产生的知识增益来确定影响设置的下一个动作。 通过将系统状态/上下文参数和动作变量(一个或多个)的一个或多个以前场合的一个或多个先前场合的动作后面的知识指标参数的值与该指标的值进行比较来评估知识增益, =具有与当前值相似的值。 优选地,基于预测模块进行的预测的准确性来评估“知识水平”。 该技术可以应用于通过使预测机器参与动作序列的选择来训练预测机器。 该技术还可以用于管理自我开发设备或系统的开发,该自我开发设备或系统执行根据动作选择技术选择的一系列动作。
    • 3. 发明申请
    • Architecture for self-developing devices
    • 自主研发设备的架构
    • US20050021483A1
    • 2005-01-27
    • US10861146
    • 2004-06-04
    • Frederic KaplanPierre-Yves Oudeyer
    • Frederic KaplanPierre-Yves Oudeyer
    • B25J13/00G06N3/00G06F15/18
    • G06N3/004
    • A self-developing device (1) capable of open-ended development makes use of a special motivational system for selecting which action should be taken on the environment by an associated sensory-motor apparatus (2). For a given candidate action, a motivational module (11) calculates a reward associated with the corresponding values that would be taken by one or more motivational variables that are independent of the nature of the associated sensory-motor apparatus. Preferred motivational variables are dependent on the developmental history of the device (1), and include variables quantifying the predictability, familiarity and stability of sensory-motor variables serving as the inputs to the device (1). The sensory-motor variables represent the status of the external environment and/or the internal resources (3) of the sensory-motor apparatus (2) whose behaviour is controlled by the self-developing device (1). Open-ended development is enabled by attributing a reward which is proportional to the rate of change of the history-dependent motivational variables.
    • 能够进行开放式开发的自行开发装置(1)利用特殊的激励系统,用于通过相关的感官电动机装置(2)选择对环境采取的动作。 对于给定的候选动作,激励模块(11)计算与由与相关联的感觉运动装置的性质无关的一个或多个动机变量所采取的对应值相关联的奖励。 优选的动机变量取决于设备的发展历史(1),并且包括量化作为设备输入的感觉运动变量的可预测性,熟悉度和稳定性的变量(1)。 感官运动变量表示由自我开发装置(1)控制其行为的感觉运动装置(2)的外部环境和/或内部资源(3)的状态。 通过归纳与历史相关的动机变量的变化率成正比的奖励来实现开放式开发。
    • 4. 发明授权
    • Automated action-selection system and method, and application thereof to training prediction machines and driving the development of self-developing devices
    • 自动动作选择系统及方法及其应用于训练预测机器,推动自主研发设备的发展
    • US07672913B2
    • 2010-03-02
    • US11658683
    • 2005-07-26
    • Frederic KaplanPierre-Yves Oudeyer
    • Frederic KaplanPierre-Yves Oudeyer
    • G06N5/00
    • G06N3/004
    • In order to promote efficient learning of relationships inherent in a system or setup S described by system-state and context parameters, the next action to take, affecting the setup, is determined based on the knowledge gain expected to result from this action. Knowledge-gain is assessed “locally” by comparing the value of a knowledge-indicator parameter after the action with the value of this indicator on one or more previous occasions when the system-state/context parameter(s) and action variable(s) had similar values to the current ones. Preferably the “level of knowledge” is assessed based on the accuracy of predictions made by a prediction module. This technique can be applied to train a prediction machine by causing it to participate in the selection of a sequence of actions. This technique can also be applied for managing development of a self-developing device or system, the self-developing device or system performing a sequence of actions selected according to the action-selection technique.
    • 为了促进由系统状态和上下文参数描述的系统或设备S固有的关系的有效学习,基于预期从该动作产生的知识增益来确定影响设置的下一个动作。 通过将系统状态/上下文参数和动作变量(一个或多个)的一个或多个以前场合的一个或多个以上场合比较,将动作后的知识指标参数的值与该指标的值进行比较来评估知识增益, 具有与当前值相似的值。 优选地,基于预测模块进行的预测的准确性来评估“知识水平”。 该技术可以应用于通过使预测机器参与动作序列的选择来训练预测机器。 该技术还可以用于管理自我开发设备或系统的开发,该自我开发设备或系统执行根据动作选择技术选择的一系列动作。
    • 5. 发明授权
    • Architecture for self-developing devices
    • 自主研发设备的架构
    • US07478073B2
    • 2009-01-13
    • US10861146
    • 2004-06-04
    • Frederic KaplanPierre-Yves Oudeyer
    • Frederic KaplanPierre-Yves Oudeyer
    • G06F15/18G05B13/00
    • G06N3/004
    • A self-developing device (1) capable of open-ended development makes use of a special motivational system for selecting which action should be taken on the environment by an associated sensory-motor apparatus (2). For a given candidate action, a motivational module (11) calculates a reward associated with the corresponding values that would be taken by one or more motivational variables that are independent of the nature of the associated sensory-motor apparatus. Preferred motivational variables are dependent on the developmental history of the device (1), and include variables quantifying the predictability, familiarity and stability of sensory-motor variables serving as the inputs to the device (1). The sensory-motor variables represent the status of the external environment and/or the internal resources (3) of the sensory-motor apparatus (2) whose behavior is controlled by the self-developing device (1). Open-ended development is enabled by attributing a reward which is proportional to the rate of change of the history-dependent motivational variables.
    • 能够进行开放式开发的自行开发装置(1)利用特殊的激励系统,用于通过相关的感官电动机装置(2)选择对环境采取的动作。 对于给定的候选动作,激励模块(11)计算与由与相关联的感觉运动装置的性质无关的一个或多个动机变量所采取的对应值相关联的奖励。 优选的动机变量取决于设备的发展历史(1),并且包括量化作为设备输入的感觉运动变量的可预测性,熟悉度和稳定性的变量(1)。 感官运动变量表示由自我开发装置(1)控制其行为的感觉运动装置(2)的外部环境和/或内部资源(3)的状态。 通过归纳与历史相关的动机变量的变化率成正比的奖励来实现开放式开发。