会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • Semiconductor Device and Method of Making
    • 半导体器件及制造方法
    • US20140252359A1
    • 2014-09-11
    • US13704614
    • 2012-12-14
    • Fudan University
    • Dongping WuZhaoyang PiNa ZhaoWei ZhangShi-Li Zhang
    • H01L21/48H01L21/768H01L29/45
    • H01L21/486H01L21/76843H01L21/76855H01L21/76883H01L21/76889H01L23/485H01L23/53271H01L29/458H01L2924/0002H01L2924/00
    • The present disclosure is related to semiconductor technologies and discloses a semiconductor device and its method of making. In the present disclosure, a transistor's source and drain are led out by forming vias or contact holes in an insulator layer covering the transistor and at metal silicide contact regions corresponding to the source and drain, and by filling the vias with metal-semiconductor compound. Because the metal-semiconductor compound has relatively low resistivity, the resistance of the material in the vias can be minimized. Also, because the material used to fill the vias and the material forming the source/drain contact regions are both metal-semiconductor compound, contact resistance between the material filling the vias and the source/drain contact regions can be minimized. Furthermore, because the material filling the vias is metal-semiconductor compound, the conducting material in the vias and dielectric material in the insulator layer can form good interface and have good adhesion properties, and the conducting material would not cause structural damage in the dielectric material. Thus, there is no need to form a barrier layer between the insulator layer and the material filling the vias.
    • 本公开涉及半导体技术,并公开了一种半导体器件及其制造方法。 在本公开内容中,通过在覆盖晶体管的绝缘体层和对应于源极和漏极的金属硅化物接触区域处形成通孔或接触孔,并且通过用金属半导体化合物填充通孔来引出晶体管的源极和漏极。 因为金属 - 半导体化合物具有相对较低的电阻率,所以可以使过孔中的材料的电阻最小化。 此外,由于用于填充通孔的材料和形成源极/漏极接触区域的材料都是金属 - 半导体化合物,所以填充通孔的材料与源极/漏极接触区域之间的接触电阻可以最小化。 此外,由于填充过孔的材料是金属 - 半导体化合物,所以绝缘体层中的通孔和电介质材料中的导电材料可以形成良好的界面并且具有良好的粘合性能,并且导电材料不会在介电材料中引起结构损坏 。 因此,不需要在绝缘体层和填充通孔的材料之间形成阻挡层。
    • 5. 发明申请
    • TUNNEL TRANSISTOR STRUCTURE INTEGRATED WITH A RESISTANCE RANDOM ACCESS MEMORY (RRAM) AND A MANUFACTURING METHOD THEREOF
    • 与电阻随机存取存储器(RRAM)集成的隧道晶体管结构及其制造方法
    • US20130341697A1
    • 2013-12-26
    • US13663180
    • 2012-10-29
    • FUDAN UNIVERSITY
    • Xi LinPengfei WangQingqing SunWei Zhang
    • H01L45/00
    • H01L45/1206H01L27/2436H01L45/04H01L45/1233H01L45/146H01L45/16H01L45/1616
    • The invention relates to the technical field of semiconductor memories, in particular to a tunnel transistor structure integrated with a resistance random access memory and a manufacturing method thereof. The tunnel transistor structure in the present invention comprises a semiconductor substrate, and a tunnel transistor and a resistance random access memory formed on the semiconductor substrate, wherein the gate dielectric layer of the tunnel transistor extends to the surface of a drain region of the tunnel transistor; the part of the gate dielectric layer on the surface of the drain region of the tunnel transistor forms the resistance-variable storage layer of the resistance random access memory. In this invention, the high-quality gate dielectric layer of the tunnel transistor and the resistance-variable storage layer of the resistance random access memory are obtained by primary atomic layer deposition which integrates the resistance random access memory and tunnel transistor together without increasing steps. This process is simple and can combine the shallow trench isolation or field oxygen isolation and ion implantation or diffusion of source electrode and drain electrode to make integration convenient.
    • 本发明涉及半导体存储器的技术领域,特别涉及与电阻随机存取存储器集成的隧道晶体管结构及其制造方法。 本发明的隧道晶体管结构包括半导体衬底和形成在半导体衬底上的隧道晶体管和电阻随机存取存储器,其中隧道晶体管的栅介质层延伸到隧道晶体管的漏极区的表面 ; 隧道晶体管的漏极区域的表面上的栅极电介质层的一部分形成电阻随机存取存储器的电阻变化存储层。 在本发明中,隧道晶体管的高质量栅极电介质层和电阻随机存取存储器的电阻可变存储层通过主要原子层沉积获得,其将电阻随机存取存储器和隧道晶体管集成在一起而不增加步骤。 该工艺简单,可以结合浅沟槽隔离或场氧隔离以及源电极和漏电极的离子注入或扩散,使集成方便。
    • 8. 发明授权
    • Tunnel transistor structure integrated with a resistance random access memory (RRAM) and a manufacturing method thereof
    • 与电阻随机存取存储器(RRAM)集成的隧道晶体管结构及其制造方法
    • US09147835B2
    • 2015-09-29
    • US13663180
    • 2012-10-29
    • Fudan University
    • Xi LinPengfei WangQingqing SunWei Zhang
    • H01L29/76H01L45/00H01L27/24
    • H01L45/1206H01L27/2436H01L45/04H01L45/1233H01L45/146H01L45/16H01L45/1616
    • The invention relates to the technical field of semiconductor memories, in particular to a tunnel transistor structure integrated with a resistance random access memory and a manufacturing method thereof. The tunnel transistor structure in the present invention comprises a semiconductor substrate, and a tunnel transistor and a resistance random access memory formed on the semiconductor substrate, wherein the gate dielectric layer of the tunnel transistor extends to the surface of a drain region of the tunnel transistor; the part of the gate dielectric layer on the surface of the drain region of the tunnel transistor forms the resistance-variable storage layer of the resistance random access memory. In this invention, the high-quality gate dielectric layer of the tunnel transistor and the resistance-variable storage layer of the resistance random access memory are obtained by primary atomic layer deposition which integrates the resistance random access memory and tunnel transistor together without increasing steps. This process is simple and can combine the shallow trench isolation or field oxygen isolation and ion implantation or diffusion of source electrode and drain electrode to make integration convenient.
    • 本发明涉及半导体存储器的技术领域,特别涉及与电阻随机存取存储器集成的隧道晶体管结构及其制造方法。 本发明的隧道晶体管结构包括半导体衬底和形成在半导体衬底上的隧道晶体管和电阻随机存取存储器,其中隧道晶体管的栅介质层延伸到隧道晶体管的漏极区的表面 ; 隧道晶体管的漏极区域的表面上的栅极电介质层的一部分形成电阻随机存取存储器的电阻变化存储层。 在本发明中,隧道晶体管的高质量栅极电介质层和电阻随机存取存储器的电阻可变存储层通过主要原子层沉积获得,其将电阻随机存取存储器和隧道晶体管集成在一起而不增加步骤。 该工艺简单,可以结合浅沟槽隔离或场氧隔离以及源电极和漏电极的离子注入或扩散,使集成方便。
    • 9. 发明申请
    • Unltra-Shallow Junction Semiconductor Field-Effect Transistor and Method of Making
    • Unltra-Shallow Junction半导体场效应晶体管及其制作方法
    • US20140306271A1
    • 2014-10-16
    • US13704598
    • 2012-12-12
    • Fudan University
    • Dongping WuXiangbiao ZhouPeng XuWei ZhangShili Zhang
    • H01L21/225H01L29/78H01L29/66
    • H01L21/225H01L21/2254H01L29/665H01L29/66575H01L29/78
    • An ultra-shallow junction semiconductor field-effect transistor and its methods of making are disclosed. In the present disclosure, a mixture film is formed on a semiconductor substrate with a gate structure formed thereon using a physical vapor deposition (PVD) process, which employs a mixture of metal and semiconductor dopants as a target. The PVD process is followed by annealing, during which ultra-shallow junctions and ultra-thin metal silicide are formed. After removing the mixture film remaining on the semiconductor substrate, an ultra-shallow junction semiconductor field-effect transistor is formed. Because the mixture film comprises metal and semiconductor dopants, ultra-shallow junctions and ultra-thin metal silicide can be formed in a same annealing process. The ultra-shallow junction thus formed can be used in semiconductor field-effect transistors for the 14 nm, 11 nm, or even further technology node.
    • 公开了一种超浅结半导体场效应晶体管及其制造方法。 在本公开内容中,使用以金属和半导体掺杂剂的混合物为目标的物理气相沉积(PVD)工艺在其上形成有栅极结构的半导体衬底上形成混合膜。 PVD工艺后进行退火,在此期间形成超浅结和超薄金属硅化物。 在去除残留在半导体衬底上的混合物膜之后,形成超浅结半导体场效应晶体管。 因为混合物膜包括金属和半导体掺杂剂,所以可以在相同的退火工艺中形成超浅结和超薄金属硅化物。 如此形成的超浅结可用于14纳米,11纳米甚至更远的技术节点的半导体场效应晶体管。
    • 10. 发明授权
    • Semiconductor device and method of making
    • 半导体器件及其制造方法
    • US09385005B2
    • 2016-07-05
    • US13704614
    • 2012-12-14
    • Fudan University
    • Dongping WuZhaoyang PiNa ZhaoWei ZhangShi-Li Zhang
    • H01L21/4763H01L21/48H01L21/768H01L29/45H01L23/485H01L23/532
    • H01L21/486H01L21/76843H01L21/76855H01L21/76883H01L21/76889H01L23/485H01L23/53271H01L29/458H01L2924/0002H01L2924/00
    • The present disclosure is related to semiconductor technologies and discloses a semiconductor device and its method of making. In the present disclosure, a transistor's source and drain are led out by forming vias or contact holes in an insulator layer covering the transistor and at metal silicide contact regions corresponding to the source and drain, and by filling the vias with metal-semiconductor compound. Because the metal-semiconductor compound has relatively low resistivity, the resistance of the material in the vias can be minimized. Also, because the material used to fill the vias and the material forming the source/drain contact regions are both metal-semiconductor compound, contact resistance between the material filling the vias and the source/drain contact regions can be minimized. Furthermore, because the material filling the vias is metal-semiconductor compound, the conducting material in the vias and dielectric material in the insulator layer can form good interface and have good adhesion properties, and the conducting material would not cause structural damage in the dielectric material. Thus, there is no need to form a barrier layer between the insulator layer and the material filling the vias.
    • 本公开涉及半导体技术,并公开了一种半导体器件及其制造方法。 在本公开内容中,通过在覆盖晶体管的绝缘体层和对应于源极和漏极的金属硅化物接触区域处形成通孔或接触孔,并且通过用金属半导体化合物填充通孔来引出晶体管的源极和漏极。 因为金属 - 半导体化合物具有相对较低的电阻率,所以可以使过孔中的材料的电阻最小化。 此外,由于用于填充通孔的材料和形成源极/漏极接触区域的材料都是金属 - 半导体化合物,所以填充通孔的材料与源极/漏极接触区域之间的接触电阻可以最小化。 此外,由于填充过孔的材料是金属 - 半导体化合物,所以绝缘体层中的通孔和电介质材料中的导电材料可以形成良好的界面并且具有良好的粘合性能,并且导电材料不会在介电材料中引起结构损坏 。 因此,不需要在绝缘体层和填充通孔的材料之间形成阻挡层。