会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Method for eliminating crosstalk between waveguide grating-based biosensors located in a microplate and the resulting microplate
    • 用于消除位于微板中的基于波导光栅的生物传感器与所得微板之间的串扰的方法
    • US20060229818A1
    • 2006-10-12
    • US11101096
    • 2005-04-07
    • Ye FangAnn FerrieNorman FontaineAnthony FrutosEric MozdyChuan-Che WangPo Yuen
    • Ye FangAnn FerrieNorman FontaineAnthony FrutosEric MozdyChuan-Che WangPo Yuen
    • G06F19/00
    • G01N21/7743G01N21/253
    • The present invention includes several methods for modifying the current processes of manufacturing optical sensing microplates that use continuous waveguide films to reduce/eliminate crosstalk between the biosensors that are incorporated within wells. The methods include (1) physically deteriorating/removing the waveguide film between individual biosensors; (2) chemically depositing highly absorbing materials within the waveguide film between individual biosensors; (3) patterning disordered (scattering) regions between the diffraction gratings that define individual biosensors; (4) using a specific mask and depositing individual patches of waveguide film, where each patch defines at least one biosensor. Each of these methods and several other methods described herein prevent the propagation of light between individual sensing regions, thereby eliminating optical crosstalk between the biosensors. The present invention also includes the resulting microplate.
    • 本发明包括几种用于修改制造光学感测微板的当前工艺的方法,其使用连续波导膜来减少/消除结合在孔内的生物传感器之间的串扰。 所述方法包括(1)在各个生物传感器之间物理劣化/去除波导膜; (2)在各个生物传感器之间在波导膜内化学沉积高吸收材料; (3)在限定单个生物传感器的衍射光栅之间图形化无序(散射)区域; (4)使用特定掩模并沉积波导膜的各个贴片,其中每个贴片限定至少一个生物传感器。 这些方法和本文所描述的其它方法中的每一种都防止光在各个感测区域之间的传播,从而消除了生物传感器之间的光学串扰。 本发明还包括所得到的微孔板。
    • 3. 发明申请
    • Optical interrogation system and method for 2-D sensor arrays
    • 2-D传感器阵列的光学询问系统和方法
    • US20050236554A1
    • 2005-10-27
    • US11100199
    • 2005-04-05
    • Norman FontaineEric MozdyPo Yuen
    • Norman FontaineEric MozdyPo Yuen
    • H01L27/00
    • G01N21/6452G01N21/253G01N21/553G01N21/6456G01N21/7743
    • An optical interrogation system and method are described herein that can interrogate a two-dimensional (2D) array of optical sensors (e.g., grating coupled waveguide sensors) located in a 2D specimen plate (e.g., microplate). In one embodiment, the optical interrogation system has a launch system which directs an array of light beams towards the array of sensors in the two-dimensional specimen plate. The optical interrogation system also has a receive system that includes a Keplerian beam expander (used in reverse as a beam condenser) which receives an array of light beams output from the array of sensors and directs each received light beam to a unique region on the detection plane of a small area detector (e.g., CCD camera). In addition, the optical interrogation system has a processor that analyzes changes in the position or shape of each detected light beam to determine if a binding event (bio-chemical interaction) or a mass transport (cell-based assay) occurred, or to determine the rate of binding (kinetics) that occurred on each sensor.
    • 本文描述了可以询问位于2D样本板(例如微板)中的光学传感器(例如,光栅耦合波导传感器)的二维(2D)阵列的光学询问系统和方法。 在一个实施例中,光学询问系统具有发射系统,该发射系统将光束阵列引向二维样本板中的传感器阵列。 光学询问系统还具有接收系统,其包括开普勒光束扩展器(反向用作光束聚光器),其接收从传感器阵列输出的光束阵列,并将每个接收的光束引导到检测上的唯一区域 平面的小区域检测器(例如CCD摄像机)。 此外,光学询问系统具有处理器,其分析每个检测到的光束的位置或形状的变化,以确定是否发生结合事件(生物化学相互作用)或质量传输(基于细胞的测定)或确定 在每个传感器上发生的结合速率(动力学)。
    • 6. 发明申请
    • Arrayed sensor measurement system and method
    • 阵列传感器测量系统及方法
    • US20050099622A1
    • 2005-05-12
    • US11019439
    • 2004-12-21
    • Stephen CaracciNorman FontaineEric MozdyPo Yuen
    • Stephen CaracciNorman FontaineEric MozdyPo Yuen
    • G01N21/25G02B27/10G01J3/50
    • G01N21/253G01N2201/04G01N2201/10G02B27/1086
    • Optical interrogation systems and methods are described herein that are capable of measuring the angles (or changes in the angles) at which light reflects, transmits, scatters, or is emitted from an array of sensors or specimens that are distributed over a large area 2-dimensional array. In one embodiment of the present invention, the optical interrogation system has a far-field diffraction measurement configuration so it can simultaneously receive the light from sensors in all or a sub-section of a sensor array at a detector. In another embodiment of the present invention, the optical interrogation system incorporates an anamorphic optical receive system that enables parallel detection of angular responses from the sensors in the 2D array. In yet another embodiment of the present invention, the optical interrogation system incorporates an angular measurement system which measures the change in angular tilt of the sensor plane when the sensor array is moved or removed and then replaced in the measurement system. Several other embodiments of optical interrogation systems and methods are also described herein. A significant advantage of the present invention is that the system has no critical moving or scanning parts, which are frequently the source of measurement sensitivity limitations.
    • 本文描述了光学询问系统和方法,其能够测量光从其分布在大面积上的传感器或样本阵列2反射,透射,散射或发射的角度(或角度变化) 维数组。 在本发明的一个实施例中,光学询问系统具有远场衍射测量配置,因此它可以在检测器处同时从传感器阵列的全部或子部分接收来自传感器的光。 在本发明的另一实施例中,光学询问系统包括变形光学接收系统,其能够并行地检测来自2D阵列中的传感器的角度响应。 在本发明的另一个实施例中,光学询问系统包括角度测量系统,该系统测量当传感器阵列移动或移除并随后在测量系统中被更换时传感器平面的角度倾斜度的变化。 本文还描述了光询问系统和方法的其他几个实施例。 本发明的显着优点是该系统没有关键的移动或扫描部件,其经常是测量灵敏度限制的来源。
    • 7. 发明申请
    • Polarization modulation interrogation of grating-coupled waveguide sensors
    • 光栅耦合波导传感器的极化调制询问
    • US20070237447A1
    • 2007-10-11
    • US11236060
    • 2005-09-26
    • Eric Mozdy
    • Eric Mozdy
    • G02B6/00
    • G01N21/7743G01N21/21G01N21/253G01N33/54373
    • An optical interrogation system and a GCW sensor are described herein that are used to determine whether a biological substance (e.g., cell, molecule, protein, drug) is located in a sensing region of the GCW sensor. The optical interrogation system includes a light source, a polarization modulator and a detection system. The light source outputs a polarized light beam and the polarization modulator modulates the polarized light beam and outputs a polarization-modulated light beam. The GCW sensor receives and converts the polarization-modulated light beam into an amplitude modulated light beam that is directed towards the detection system. The detection system receives the amplitude modulated light beam and demodulates the received amplitude modulated light beam by responding to signals at a modulation frequency of the polarization-modulated light beam and ignoring noise affecting the signals outside the modulation frequency to detect a resonant condition (e.g., resonant angle, resonant wavelength). The detected resonant condition that has a one-to-one relationship with the refractive index of the superstrate containing the biological substance is analyzed to determine whether or not the biological substance is located in the sensing region of the GCW sensor.
    • 本文描述了用于确定生物物质(例如,细胞,分子,蛋白质,药物)是否位于GCW传感器的感测区域中的光学询问系统和GCW传感器。 光学询问系统包括光源,偏振调制器和检测系统。 光源输出偏振光束,偏振光调制器调制偏振光束并输出偏振调制光束。 GCW传感器将偏振调制光束接收并转换成朝向检测系统的幅度调制光束。 检测系统接收幅度调制光束并通过响应于偏振调制光束的调制频率的信号来解调所接收的幅度调制光束,并且忽略影响调制频率外的信号的噪声以检测谐振条件(例如, 谐振角,谐振波长)。 分析与包含生物物质的覆盖物的折射率具有一对一关系的检测到的共振条件,以确定生物物质是否位于GCW传感器的感测区域中。
    • 10. 发明申请
    • Polarization modulation interrogation of grating-coupled waveguide sensors
    • 光栅耦合波导传感器的极化调制询问
    • US20050018944A1
    • 2005-01-27
    • US10627438
    • 2003-07-25
    • Eric Mozdy
    • Eric Mozdy
    • G01N21/21G01N21/25G01N21/77G01N33/543G02B6/00
    • G01N21/7743G01N21/21G01N21/253G01N33/54373
    • An optical interrogation system and a GCW sensor are described herein that are used to determine whether a biological substance (e.g., cell, molecule, protein, drug) is located in a sensing region of the GCW sensor. The optical interrogation system includes a light source, a polarization modulator and a detection system. The light source outputs a polarized light beam and the polarization modulator modulates the polarized light beam and outputs a polarization-modulated light beam. The GCW sensor receives and converts the polarization-modulated light beam into an amplitude modulated light beam that is directed towards the detection system. The detection system receives the amplitude modulated light beam and demodulates the received amplitude modulated light beam by responding to signals at a modulation frequency of the polarization-modulated light beam and ignoring noise affecting the signals outside the modulation frequency to detect a resonant condition (e.g., resonant angle, resonant wavelength). The detected resonant condition that has a one-to-one relationship with the refractive index of the superstrate containing the biological substance is analyzed to determine whether or not the biological substance is located in the sensing region of the GCW sensor.
    • 本文描述了用于确定生物物质(例如,细胞,分子,蛋白质,药物)是否位于GCW传感器的感测区域中的光学询问系统和GCW传感器。 光学询问系统包括光源,偏振调制器和检测系统。 光源输出偏振光束,偏振光调制器调制偏振光束并输出偏振调制光束。 GCW传感器将偏振调制光束接收并转换成朝向检测系统的幅度调制光束。 检测系统接收幅度调制光束并通过响应于偏振调制光束的调制频率的信号来解调所接收的幅度调制光束,并且忽略影响调制频率外的信号的噪声以检测谐振条件(例如, 谐振角,谐振波长)。 分析与包含生物物质的覆盖物的折射率具有一对一关系的检测到的共振条件,以确定生物物质是否位于GCW传感器的感测区域中。