会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SYSTEM AND METHOD FOR SPEECH RECOGNITION MODELING FOR MOBILE VOICE SEARCH
    • 用于移动语音搜索的语音识别建模的系统和方法
    • US20120232902A1
    • 2012-09-13
    • US13042671
    • 2011-03-08
    • Enrico BOCCHIERIDiamantino Antonio CaseiroDimitrios Dimitriadis
    • Enrico BOCCHIERIDiamantino Antonio CaseiroDimitrios Dimitriadis
    • G10L15/06
    • G10L15/063G10L15/14
    • Disclosed herein are systems, methods, and non-transitory computer-readable storage media for generating an acoustic model for use in speech recognition. A system configured to practice the method first receives training data and identifies non-contextual lexical-level features in the training data. Then the system infers sentence-level features from the training data and generates a set of decision trees by node-splitting based on the non-contextual lexical-level features and the sentence-level features. The system decorrelates training vectors, based on the training data, for each decision tree in the set of decision trees to approximate full-covariance Gaussian models, and then can train an acoustic model for use in speech recognition based on the training data, the set of decision trees, and the training vectors.
    • 本文公开了用于生成用于语音识别的声学模型的系统,方法和非暂时的计算机可读存储介质。 被配置为练习该方法的系统首先接收训练数据并识别训练数据中的非上下文词汇级特征。 然后,该系统从训练数据推导出句子级特征,并基于非上下文词汇级特征和句子级特征,通过节点分割生成一组决策树。 该系统基于训练数据对训练数据进行解相关,对于决策树组中的每个决策树,以近似全协方差高斯模型,然后可以基于训练数据训练用于语音识别的声学模型,该集合 的决策树,以及训练矢量。
    • 2. 发明授权
    • System and method for speech recognition modeling for mobile voice search
    • 用于移动语音搜索的语音识别建模的系统和方法
    • US09558738B2
    • 2017-01-31
    • US13042671
    • 2011-03-08
    • Enrico BocchieriDiamantino Antonio CaseiroDimitrios Dimitriadis
    • Enrico BocchieriDiamantino Antonio CaseiroDimitrios Dimitriadis
    • G10L15/00G10L15/06G10L15/14
    • G10L15/063G10L15/14
    • Disclosed herein are systems, methods, and non-transitory computer-readable storage media for generating an acoustic model for use in speech recognition. A system configured to practice the method first receives training data and identifies non-contextual lexical-level features in the training data. Then the system infers sentence-level features from the training data and generates a set of decision trees by node-splitting based on the non-contextual lexical-level features and the sentence-level features. The system decorrelates training vectors, based on the training data, for each decision tree in the set of decision trees to approximate full-covariance Gaussian models, and then can train an acoustic model for use in speech recognition based on the training data, the set of decision trees, and the training vectors.
    • 本文公开了用于生成用于语音识别的声学模型的系统,方法和非暂时的计算机可读存储介质。 被配置为练习该方法的系统首先接收训练数据并识别训练数据中的非上下文词汇级特征。 然后,该系统从训练数据推导出句子级特征,并基于非上下文词汇级特征和句子级特征,通过节点分割生成一组决策树。 该系统基于训练数据对训练数据进行解相关,对于决策树组中的每个决策树,以近似全协方差高斯模型,然后可以基于训练数据训练用于语音识别的声学模型,该集合 的决策树,以及训练矢量。
    • 10. 发明授权
    • System and method for handling repeat queries due to wrong ASR output by modifying an acoustic, a language and a semantic model
    • 通过修改声学,语言和语义模型,由于错误的ASR输出来处理重复查询的系统和方法
    • US08990085B2
    • 2015-03-24
    • US12570757
    • 2009-09-30
    • Andrej LjoljeDiamantino Antonio Caseiro
    • Andrej LjoljeDiamantino Antonio Caseiro
    • G10L21/00G10L15/00G10L15/065G10L15/183G10L15/22
    • G10L15/1815G10L15/063G10L15/065G10L15/183G10L15/22
    • Disclosed herein are systems, computer-implemented methods, and computer-readable storage media for handling expected repeat speech queries or other inputs. The method causes a computing device to detect a misrecognized speech query from a user, determine a tendency of the user to repeat speech queries based on previous user interactions, and adapt a speech recognition model based on the determined tendency before an expected repeat speech query. The method can further include recognizing the expected repeat speech query from the user based on the adapted speech recognition model. Adapting the speech recognition model can include modifying an acoustic model, a language model, and a semantic model. Adapting the speech recognition model can also include preparing a personalized search speech recognition model for the expected repeat query based on usage history and entries in a recognition lattice. The method can include retaining unmodified speech recognition models with adapted speech recognition models.
    • 本文公开了用于处理预期重复语音查询或其他输入的系统,计算机实现的方法和计算机可读存储介质。 该方法使得计算设备检测来自用户的误识别语音查询,确定用户基于先前用户交互重复语音查询的趋势,以及基于在预期重复语音查询之前确定的趋势来调整语音识别模型。 该方法还可以包括基于适应的语音识别模型识别来自用户的预期重复语音查询。 适应语音识别模型可以包括修改声学模型,语言模型和语义模型。 适应语音识别模型还可以包括基于使用历史和识别格中的条目为预期重复查询准备个性化搜索语音识别模型。 该方法可以包括使用适应的语音识别模型保留未修改的语音识别模型。