会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • CLOUD DATA STORAGE USING REDUNDANT ENCODING
    • 使用冗余编码的云数据存储
    • US20130054549A1
    • 2013-02-28
    • US13221928
    • 2011-08-31
    • Parikshit GopalanCheng HuangHuseyin SimitciSergey Yekhanin
    • Parikshit GopalanCheng HuangHuseyin SimitciSergey Yekhanin
    • G06F17/30
    • G06F17/30557
    • Cloud data storage systems, methods, and techniques partition system data symbols into predefined-sized groups and then encode each group to form corresponding parity symbols, encode all data symbols into global redundant symbols, and store each symbol (data, parity, and redundant) in different failure domains in a manner that ensures independence of failures. In several implementations, the resultant cloud-encoded data features both data locality and ability to recover up to a predefined threshold tolerance of simultaneous erasures (unavailable data symbols) without any information loss. In addition, certain implementations also feature the placement of cloud-encoded data in domains (nodes or node groups) to provide similar locality and redundancy features simultaneous with the recovery of an entire domain of data that is unavailable due to software or hardware upgrades or failures.
    • 云数据存储系统,方法和技术将系统数据符号划分成预定义大小的组,然后对每个组进行编码以形成对应的奇偶校验符号,将所有数据符号编码为全局冗余符号,并存储每个符号(数据,奇偶校验和冗余) 在不同的故障域中,以确保故障的独立性。 在几个实现中,由此产生的云编码数据同时具有数据局部性和恢复到同时擦除(不可用数据符号)的预定义阈值容差而无任何信息丢失的能力。 此外,某些实现还将云编码数据放置在域(节点或节点组)中,以便与恢复由于软件或硬件升级或故障而不可用的整个数据域同时提供类似的位置和冗余功能 。
    • 3. 发明申请
    • HIGH RATE LOCALLY DECODABLE CODES
    • 高速本地解码码
    • US20120246547A1
    • 2012-09-27
    • US13052136
    • 2011-03-21
    • Sergey YekhaninSwastik KoppartyShubhangi Saraf
    • Sergey YekhaninSwastik KoppartyShubhangi Saraf
    • G06F11/08
    • H03M13/033H03M13/136
    • Data storage techniques and solutions simultaneously provide efficient random access to information and high noise resilience. The amount of storage space utilized is only slightly larger than the size of the data. The solution is based on locally decodable error-correcting codes (also referred to as locally decodable codes or LDCs). Locally decodable codes are described herein that are more efficient than conventional locally decodable codes. Such locally decodable codes are referred to as “multiplicity codes”. These codes are based on evaluating multivariate polynomials and their derivatives. Multiplicity codes extend traditional multivariate polynomial based (e.g., Reed-Muller) codes. Multiplicity codes inherit the local decodability of Reed-Muller codes, and at the same time achieve substantially better parameters.
    • 数据存储技术和解决方案同时提供对信息的高效随机访问和高噪声弹性。 所使用的存储空间量仅略大于数据的大小。 该解决方案基于本地可解码的纠错码(也称为本地可解码或最不发达国家)。 这里描述的本地可解码代码比传统的本地可解码的代码更有效。 这样的本地可解码被称为“多重码”。 这些代码基于评估多元多项式及其导数。 多重码扩展了基于传统的多元多项式(例如里德 - 穆勒)码。 多重代码继承了Reed-Muller代码的本地可解码性,同时实现了更好的参数。
    • 4. 发明授权
    • Cloud data storage using redundant encoding
    • 使用冗余编码的云数据存储
    • US09141679B2
    • 2015-09-22
    • US13221928
    • 2011-08-31
    • Parikshit GopalanCheng HuangHuseyin SimitciSergey Yekhanin
    • Parikshit GopalanCheng HuangHuseyin SimitciSergey Yekhanin
    • G06F7/00G06F17/30
    • G06F17/30557
    • Cloud data storage systems, methods, and techniques partition system data symbols into predefined-sized groups and then encode each group to form corresponding parity symbols, encode all data symbols into global redundant symbols, and store each symbol (data, parity, and redundant) in different failure domains in a manner that ensures independence of failures. In several implementations, the resultant cloud-encoded data features both data locality and ability to recover up to a predefined threshold tolerance of simultaneous erasures (unavailable data symbols) without any information loss. In addition, certain implementations also feature the placement of cloud-encoded data in domains (nodes or node groups) to provide similar locality and redundancy features simultaneous with the recovery of an entire domain of data that is unavailable due to software or hardware upgrades or failures.
    • 云数据存储系统,方法和技术将系统数据符号划分成预定义大小的组,然后对每个组进行编码以形成对应的奇偶校验符号,将所有数据符号编码为全局冗余符号,并存储每个符号(数据,奇偶校验和冗余) 在不同的故障域中,以确保故障的独立性。 在几个实现中,由此产生的云编码数据同时具有数据局部性和恢复到同时擦除(不可用数据符号)的预定义阈值容差而无任何信息丢失的能力。 此外,某些实现还将云编码数据放置在域(节点或节点组)中,以便与恢复由于软件或硬件升级或故障而不可用的整个数据域同时提供类似的位置和冗余功能 。
    • 5. 发明授权
    • High rate locally decodable codes
    • 高速本地可解码
    • US08621330B2
    • 2013-12-31
    • US13052136
    • 2011-03-21
    • Sergey YekhaninSwastik KoppartyShubhangi Saraf
    • Sergey YekhaninSwastik KoppartyShubhangi Saraf
    • H03M13/00G11C29/00
    • H03M13/033H03M13/136
    • Data storage techniques and solutions simultaneously provide efficient random access to information and high noise resilience. The amount of storage space utilized is only slightly larger than the size of the data. The solution is based on locally decodable error-correcting codes (also referred to as locally decodable codes or LDCs). Locally decodable codes are described herein that are more efficient than conventional locally decodable codes. Such locally decodable codes are referred to as “multiplicity codes”. These codes are based on evaluating multivariate polynomials and their derivatives. Multiplicity codes extend traditional multivariate polynomial based (e.g., Reed-Muller) codes. Multiplicity codes inherit the local decodability of Reed-Muller codes, and at the same time achieve substantially better parameters.
    • 数据存储技术和解决方案同时提供对信息的高效随机访问和高噪声弹性。 所使用的存储空间量仅略大于数据的大小。 该解决方案基于本地可解码的纠错码(也称为本地可解码或最不发达国家)。 这里描述的本地可解码代码比传统的本地可解码的代码更有效。 这样的本地可解码被称为“多重码”。 这些代码基于评估多元多项式及其导数。 多重码扩展了基于传统的多元多项式(例如里德 - 穆勒)码。 多重代码继承了Reed-Muller代码的本地可解码性,同时实现了更好的参数。