会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Integral heat pipe module
    • 一体式热管模块
    • US4833567A
    • 1989-05-23
    • US107890
    • 1987-10-09
    • Elric SaaskiRobert J. HannemannLeslie R. Fox
    • Elric SaaskiRobert J. HannemannLeslie R. Fox
    • F28D15/04H01L23/427
    • H01L23/427F28D15/0233F28D15/046H01L2224/16H01L2224/73204H01L2224/73253
    • An integral heat pipe for transferring heat away from electronic components is disclosed. The heat pipe comprises at least one electronic component mounted to a substrate. A condenser cap is fastened over the substrate to define a sealed pipe chamber around the electronic component. The top of the condenser cap facing the component is a condenser surface and is provided with a number of parallel fluted sections. Each fluted section has parallel vertical sidewalls and a semi-circular top section. A multi-layered fiberous, porous, wick is located between the condenser surface flutes and the top of the electrical component. The top of the component may be provided with a number of parallel grooves exposed to the wick. The pipe chamber is filled with a two-phase working fluid. The heat generated by the electrical component causes the liquid fraction of the working fluid adjacent the component to evaporate. The vapor travels to the fluted condensing surface. The latent heat of vaporization is removed from the vapor so it recondenses and returns to the bottom of the module to repeat the heat transfer cycle. The wick's capillary pumping action keeps the fluid distributed over the top surface of the electronic component. The grooved top surface of the electronic component exposed to the wick cause an inverted liquid meniscus to be formed over the component. This causes the liquid adjacent the top of the component to readily evaporate.
    • 公开了一种用于将热量从电子部件传出的整体式热管。 热管包括安装到基底的至少一个电子部件。 冷凝器盖紧固在基板上以限定电子部件周围的密封管室。 冷凝器盖的面向组件的顶部是冷凝器表面,并且设置有多个平行的槽纹部分。 每个带槽部分具有平行的垂直侧壁和半圆顶部。 多层纤维,多孔芯位于冷凝器表面槽纹和电气部件的顶部之间。 组件的顶部可以设置有暴露于灯芯的多个平行凹槽。 管腔充满两相工作流体。 由电气部件产生的热量使得与部件相邻的工作流体的液体部分蒸发。 蒸气传播到有槽的冷凝表面。 蒸发的潜热从蒸气中除去,使其再次发生并返回到模块的底部以重复传热循环。 油绳的毛细管抽吸动作使流体分布在电子部件的顶表面上。 暴露于芯的电子部件的带槽的顶表面将导致在组件上形成反向的液体弯液面。 这使得邻近组件顶部的液体容易蒸发。
    • 2. 发明申请
    • Misalignment compensating optical sensor and method
    • 不对准补偿光学传感器和方法
    • US20060039643A1
    • 2006-02-23
    • US10923530
    • 2004-08-20
    • Elric Saaski
    • Elric Saaski
    • G02B6/00G02B6/26
    • G02B6/4206G02B6/4225
    • A misalignment compensating optical sensor (222), that is operable to receive excitation light (30) having a range of input propagation angles ω. The sensor (222) has a variable reflected propagation angle θ0i reflective surface (227) and a sensing waveguide (228). The shape of the reflective surface (227) is selected to maximize the amount of the excitation light (30) it reflects into the sensing waveguide (227) despite misalignment errors between the sensor (222) and the source (58) of excitation light (30). The sensor may also have a lens portion (160) for focusing the excitation light (30) onto the reflective surface (227), and/or a lens portion (174) for collimating the output of signal recovery light (32) from the waveguide (228). An iterative method may be used for designing any particular lens portion (160, 174).
    • 不对准补偿光学传感器(222),其可操作以接收具有输入传播角度ω的范围的激发光(30)。 传感器(222)具有可变的反射传播角θ反射表面(227)和感测波导(228)。 选择反射表面(227)的形状以使其反射到感测波导(227)中的激发光(30)的量最大化,尽管传感器(222)和激发光源(58)之间的对准误差 30)。 传感器还可以具有用于将激发光(30)聚焦到反射表面(227)上的透镜部分(160)和/或用于使来自波导的信号恢复光(32)的输出准直的透镜部分(174) (228)。 可以使用迭代方法来设计任何特定的透镜部分(160,174)。
    • 4. 发明申请
    • Enhanced waveguide and method
    • 增强波导和方法
    • US20050260677A1
    • 2005-11-24
    • US10470216
    • 2002-02-01
    • Elric Saaski
    • Elric Saaski
    • G01N21/64C12M1/34G01J3/00G01N21/55G01N21/77G01N21/78G01N33/02G01N33/53G01N35/00G01N35/02G01N35/08G01N35/10G02B6/26G02B6/42
    • G01N21/648G01N21/553G01N21/7703G01N35/0099G01N2021/7786G01N2035/1062G02B6/262G02B6/4206G02B6/4214G02B6/4246Y10S435/808Y10S436/805Y10T436/11Y10T436/113332
    • The present invention provides an optical assay apparatus that includes a light source module and an optical sensor. The light source module produces light having a range of propagation angles. The sensor includes a light adjusting portion and an assay sensing portion. The light adjusting portion receives the light produced by the light source module and provides light having a propagation angle that is substantially constant to the assay sensing portion. In one embodiment, the sensor may be coupled with the light source module by an interrogation module which includes a window in which a waveguide is integrated. In another embodiment, the sensor and interrogation module are mounted in an automated assay platform that provides two-dimensional or three-dimensional movement of the sensor so that it can be sequentially immersed in solutions required to perform a particular assay protocol. While the sensor is immersed in a particular liquid, the system provides oscillatory movement of the sensor and/or rotary movement of the contacted liquid to increase evanescent wave region reaction rates with targeted analytes and/or reagents.
    • 本发明提供一种光学测定装置,其包括光源模块和光学传感器。 光源模块产生具有传播角度范围的光。 该传感器包括光调节部分和测定感测部分。 光调节部分接收由光源模块产生的光,并提供具有与测定感测部分基本恒定的传播角度的光。 在一个实施例中,传感器可以通过询问模块与光源模块耦合,询问模块包括其中波导被集成在其中的窗口。 在另一个实施例中,传感器和询问模块安装在自动测定平台中,其提供传感器的二维或三维运动,使得其可以顺序地浸没在执行特定测定方案所需的溶液中。 当传感器浸入特定液体中时,系统提供传感器的振荡运动和/或接触液体的旋转运动,以增加目标分析物和/或试剂的ev逝波区反应速率。