会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and apparatus for increasing channel plasma density in an MHD
vacuum pump
    • 用于增加MHD真空泵中的通道等离子体密度的方法和装置
    • US5975855A
    • 1999-11-02
    • US758698
    • 1996-12-03
    • Earl S. EnsbergGary L. Jahns
    • Earl S. EnsbergGary L. Jahns
    • H02K44/02
    • H02K44/02
    • Flat, insulated, metallic strips ("applicators"), are fixed to the wider sides of each permanent magnet assembly in the channel array of a Magnetohydrodynamic (MHD) Vacuum Pump. Electromagnetic power from an external rf/microwave generator is delivered by an appropriate transmission line to each pair of applicators, providing an rf/microwave electric field, generally parallel to the magnetic field of the magnets, across each channel in the array. As the plasma ions and electrons formed by the rf/microwave field lose energy by collisions with the channel surfaces and by collisions with neutral molecules in the channel, the microwave electric field reheats the plasma throughout its passage through the length of the channel array, increasing plasma density and enabling the use of much longer channels, thus increasing the throughput and compression ratio in the MHD Vacuum Pump.
    • 扁平,绝缘,金属条(“施加器”)固定在磁流体动力(MHD)真空泵的通道阵列中的每个永磁体组件的较宽侧。 来自外部RF /微波发生器的电磁功率通过适当的传输线传送到每对施加器,提供通常平行于磁体的磁场的射频/微波电场,穿过阵列中的每个通道。 由于由rf /微波场形成的等离子体离子和电子通过与通道表面的碰撞和与通道中的中性分子的碰撞而失去能量,微波电场在其通过通道阵列的长度的过程中重新加热等离子体,增加 等离子体密度并且能够使用更长的通道,从而增加了MHD真空泵中的生产量和压缩比。
    • 2. 发明授权
    • Industrial process fault detection using principal component analysis
    • 使用主成分分析的工业过程故障检测
    • US06952657B2
    • 2005-10-04
    • US10658984
    • 2003-09-10
    • Gary L. JahnsYiXin ZhangAnthony Peter Palladino
    • Gary L. JahnsYiXin ZhangAnthony Peter Palladino
    • G05B23/02G06F11/30
    • G05B23/0254
    • A method and system for use in monitoring/evaluating industrial processes such as, for example, plasma processes are provided. In one embodiment, a plasma process fault detection module (100) includes multiple sub-modules. A data selection sub-module (101) obtains selected optical emissions spectra (OES) data for each wafer that is processed. A model building/updating sub-module (102) constructs multiple models from the OES data for a number of wafers. A principal component analysis (PCA) analysis sub-module (103) utilizes PCA techniques to determine whether the OES data for a particular wafer differs significantly from an expected normal wafer as represented by the models. A model maintenance sub-module (104) saves and retrieves models for different processes, associating the current wafer with the correct process. A wafer categorization sub-module (105) categorizes each wafer based on a scalar metric characterizing the residual spectrum vector. A data output sub-module (106) outputs the results to a user.
    • 提供了用于监测/评估工业过程例如等离子体处理的方法和系统。 在一个实施例中,等离子体过程故障检测模块(100)包括多个子模块。 数据选择子模块(101)获得被处理的每个晶片的所选择的光发射光谱(OES)数据。 模型构建/更新子模块(102)针对多个晶片从OES数据构建多个模型。 主成分分析(PCA)分析子模块(103)利用PCA技术来确定特定晶片的OES数据是否与模型所表示的预期正常晶片显着不同。 模型维护子模块(104)保存和检索不同过程的模型,将当前晶片与正确的过程相关联。 晶片分类子模块(105)基于表征剩余光谱矢量的标量度量对每个晶片进行分类。 数据输出子模块(106)将结果输出给用户。
    • 3. 发明授权
    • System for indirectly monitoring and controlling a process with
particular application to plasma processes
    • 用于间接监测和控制具有特殊应用于等离子体工艺的工艺的系统
    • US5711843A
    • 1998-01-27
    • US392631
    • 1995-02-21
    • Gary L. Jahns
    • Gary L. Jahns
    • H01J37/32H01L21/66
    • B24B37/013H01J37/32935H01J37/32972H01J37/3299H01L22/20H01L22/26
    • The invention enables real-time control of a process using information regarding process properties that are indirectly related to the state of the process. A set of properties that characterize the process environment (fingerprint) is measured and used by a process results estimator to infer information regarding the state of the process and by a process condition monitor for monitoring the process to ascertain whether a particular type of condition exists. In one embodiment, optical emission spectra (OES) are used as the fingerprint. The process results estimator is sufficiently powerful to enable the process state to be inferred even when the relationship between the process environmental properties and the process state is complicated and difficult to describe with traditional mathematical models. In one embodiment, the process results estimator is embodied by a neural network. The process condition monitor can also be embodied by a neural network. Because the invention does not directly measure the process state, the invention is particularly useful in situations in which it is difficult or undesirable to directly determine the state of the process during the process such as monitoring and control of a plasma process such as plasma etching.
    • 本发明使得能够使用与过程的状态间接相关的过程属性的信息来实时地控制过程。 表征过程环境(指纹)的一组属性由过程结果估计器测量和使用,以推断关于过程状态的信息,以及用于监视过程以确定特定类型的条件是否存在的过程状态监视器。 在一个实施例中,使用光发射光谱(OES)作为指纹。 过程结果估计器足够强大,即使当过程环境属性和过程状态之间的关系复杂且难以用传统数学模型描述时,也能够推断过程状态。 在一个实施例中,过程结果估计器由神经网络实现。 过程状态监视器也可以由神经网络来实现。 因为本发明不直接测量工艺状态,所以本发明在诸如等离子体蚀刻等离子体处理的监视和控制的过程中直接确定工艺的状态是困难或不期望的情况下特别有用。
    • 4. 发明授权
    • Magnetohydrodynamic vacuum pump
    • 磁流体动力真空泵
    • US5165861A
    • 1992-11-24
    • US524281
    • 1990-05-16
    • Gary L. Jahns
    • Gary L. Jahns
    • H01J41/12H02K44/04
    • H01J41/12H02K44/04
    • This invention relates to the technology of preparing a vacuum by removing gases from an enclosed volume and to the use of magnetized plasma as the working fluid in a vacuum pump. The pumping action is created by ionizing the gas to be pumped with microwave radiation and then by exerting magnetohydrodynamic forces on the plasma to flow through a region of constricted space which impedes the backflow of neutral gas thus causing compression of the gas in the exit region. The magnetohydrodynamic forces arise as the vector product of a plasma current j and a magnetic field B, which are imposed on the plasma by a structure of electrodes and permanent magnets. The geometry of this structure is such that the magnetic force and the plasma current between electrodes are approximately perpendicular to each other and to the axis of the device. The resulting j.times.B force then creates an axial plasma flow and neutral compression. This invention additionally relates to the molecular dissociation of toxic or corrosive constituents of the gas being pumped, as a consequence of the ionization process, and to the benefit that the toxics or corrosives are destroyed without an additional process required. This invention additionally relates to the production of desirable chemical reactions among intentionally-introduced gases that are enhanced by the high temperature and ionized state of the resulting plasma.
    • 本发明涉及通过从封闭容积中除去气体和使用磁化等离子体作为真空泵中的工作流体来制备真空的技术。 泵送动作是通过用微波辐射电离被泵送的气体,然后通过在等离子体上施加磁流体动力来流过限制空间的区域,从而阻止中性气体的回流,从而导致出口区域中的气体的压缩而产生的。 磁流体动力作为等离子体电流j和磁场B的矢量积产生,其通过电极和永磁体的结构施加在等离子体上。 这种结构的几何形状使得电极之间的磁力和等离子体电流彼此近似垂直于装置的轴线。 所产生的jxB力产生轴向等离子体流和中性压缩。 本发明还涉及作为电离过程的结果的被泵送气体的有毒或腐蚀性成分的分子解离,以及有毒或腐蚀性物质在不需要额外工艺的情况下被破坏的益处。 本发明另外涉及在所产生的等离子体的高温和离子化状态下增强的有意引入气体中产生理想的化学反应。