会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • ACOUSTIC CAMERA
    • 声乐相机
    • US20150124558A1
    • 2015-05-07
    • US14398367
    • 2013-03-13
    • Dipen N. SINHALOS ALAMOS NATIONAL SECURITY, LLC
    • Dipen N. SinhaJohn F. Brady
    • G01S7/52G01S15/02
    • G01S7/52017G01N29/0654G01N29/07G01N29/221G01N2291/106G01S15/02G01S15/8913G01S15/8925G01S15/8993
    • Apparatus for generating accurate 3-dimensional images of objects immersed in liquids including optically opaque liquids which may also have significant sound attenuation, is described. Sound pulses are caused to impinge on the object, and the time-of-flight of the reflected sound is used to create a 3-dimensional image of the object in almost real-time. The apparatus is capable of creating images of objects immersed in fluids that are optically opaque and have high sound attenuation at resolutions less than about 1 mm. The apparatus may include a piezoelectric transducer for generating the acoustic pulses; a high-density polyethylene compound acoustic lens, a 2-dimensional segmented piezoelectric detecting array positioned behind the lens for receiving acoustic pulses reflected by the object, the electric output of which is directed to digital signal processing electronics for generating the image.
    • 描述了用于产生浸入液体中的物体的精确三维图像的装置,包括也可能具有显着声音衰减的不透光液体。 引起声音脉冲撞击物体,反射声音的飞行时间几乎实时地用于创建物体的三维图像。 该装置能够产生浸没在光学不透明的流体中的物体的图像,并且在小于约1mm的分辨率下具有高的声音衰减。 该装置可以包括用于产生声脉冲的压电换能器; 高密度聚乙烯复合声透镜,位于透镜后面的2维分段压电检测阵列,用于接收由物体反射的声脉冲,其电输出被引导到用于产生图像的数字信号处理电子装置。
    • 5. 发明申请
    • APPARATUS AND METHOD FOR ACOUSTIC MONITORING OF STEAM QUALITY AND FLOW
    • 蒸汽质量和流量监测的装置和方法
    • US20130067992A1
    • 2013-03-21
    • US13414457
    • 2012-03-07
    • Dipen N. SinhaCristian Pantea
    • Dipen N. SinhaCristian Pantea
    • G01N29/036
    • G01N29/036G01F1/666
    • An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.
    • 描述了用于非侵入性地监测蒸汽质量和流动以及承载流动蒸汽的管道或导管中的装置和方法。 通过流动的蒸汽通过与管道直接接触或远程地测量在蒸汽输送管道中产生的声音振动,将测量的声振动转换成管道的天然共振振动的频谱特性,并监测振幅和 /或一个或多个选择的共振频率的频率,确定管道中蒸汽质量的变化。 蒸汽流量和蒸汽质量呈反比关系,一旦获得适当的校准曲线,则根据蒸汽质量的变化计算蒸汽流量的变化。
    • 6. 发明授权
    • Gas separation using ultrasound and light absorption
    • 气体分离采用超声波和光吸收
    • US08231707B2
    • 2012-07-31
    • US12242185
    • 2008-09-30
    • Dipen N. Sinha
    • Dipen N. Sinha
    • B01D51/08
    • B01D51/08B01D53/007B01D2257/502B01D2257/504B01D2259/816
    • An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.
    • 描述了从不具有运动部件的气体混合物中分离所选择的气体并且不利用化学处理的装置和方法。 使用超声观察了颗粒与其流体载体的分离。 以类似的方式,分子物质可以与载体物质分离。 还已知光诱导的漂移可以将光吸收物质与载体物质分开。 因此,预期时间脉冲的光吸收与超声波浓度的组合将通过超声波浓度单独显着提高分离效率。 另外,破坏圆柱形声浓缩器的空间对称性降低了浓缩颗粒的空间分布,提高了浓缩效率。
    • 7. 发明申请
    • APPARATUS AND METHOD FOR NONINVASIVE PARTICLE DETECTION USING DOPPLER SPECTROSCOPY
    • 使用多普勒光谱法进行非侵入粒子检测的装置和方法
    • US20120055264A1
    • 2012-03-08
    • US13225750
    • 2011-09-06
    • Dipen N. Sinha
    • Dipen N. Sinha
    • G01F1/66
    • G01F1/663G01F1/704G01F1/74G01N15/02G01N29/036G01N2015/0053G01N2291/017G01N2291/02416
    • An apparatus and method for noninvasively detecting the presence of solid particulate matter suspended in a fluid flowing through a pipe or an oil and gas wellbore are described. Fluid flowing through a conduit containing the particulate solids is exposed to a fixed frequency (>1 MHz) of ultrasonic vibrations from a transducer attached to the outside of the pipe. The returning Doppler frequency shifted signal derived from the scattering of sound from the moving solid particles is detected by an adjacent transducer. The transmitted signal and the Doppler signal are combined to provide sensitive particulate detection. The magnitude of the signal and the Doppler frequency shift are used to determine the particle size distribution and the velocity of the particles. Measurement of the phase shift between the applied frequency and the detected Doppler shifted may be used to determine the direction of motion of the particles.
    • 描述了用于非侵入性地检测悬浮在流过管道或油气井的流体中的固体颗粒物质的存在的装置和方法。 流过包含颗粒固体的管道的流体暴露于来自连接到管外部的传感器的超声振动的固定频率(> 1MHz)。 通过相邻的换能器检测来自移动固体颗粒的声音散射得到的返回多普勒频移信号。 发射信号和多普勒信号被组合以提供敏感的微粒检测。 信号的大小和多普勒频移用于确定粒子的粒度分布和粒子的速度。 所施加的频率和检测到的多普勒频移之间的相移的测量可以用于确定颗粒的运动方向。
    • 10. 发明申请
    • GAS SEPARATION USING ULTRASOUND AND LIGHT ABSORPTION
    • 使用超声波和光吸收的气体分离
    • US20100077919A1
    • 2010-04-01
    • US12242185
    • 2008-09-30
    • Dipen N. Sinha
    • Dipen N. Sinha
    • B01D49/00B01D51/08
    • B01D51/08B01D53/007B01D2257/502B01D2257/504B01D2259/816
    • An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.
    • 描述了从不具有运动部件的气体混合物中分离所选择的气体并且不利用化学处理的装置和方法。 使用超声观察了颗粒与其流体载体的分离。 以类似的方式,分子物质可以与载体物质分离。 还已知光诱导漂移可以将光吸收物质与载体物质分开。 因此,预期时间脉冲的光吸收与超声波浓度的组合将通过超声波浓度单独显着提高分离效率。 另外,破坏圆柱形声浓缩器的空间对称性降低了浓缩颗粒的空间分布,提高了浓缩效率。