会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and system for a low-complexity soft-output MIMO detection
    • 低复杂度软输出MIMO检测的方法和系统
    • US08670508B2
    • 2014-03-11
    • US13149743
    • 2011-05-31
    • Dimpesh PatelMahdi ShabanyGlenn Gulak
    • Dimpesh PatelMahdi ShabanyGlenn Gulak
    • H04L27/00
    • H04B7/0456H04L25/03203
    • An approach for Soft-output K-Best MIMO detection comprises computing an estimated symbol vector and Log-Likelihood Ratio (LLR) values for transmitted bits. The approach includes a relevant discarded paths selection process, a last-stage on-demand expansion process, and a relaxed LLR computation process. The relevant discarded paths selection process includes analyzing the K-Best paths and discarded paths at each intermediate tree level and selecting only those discarded paths for further processing that will help in LLR computation for at least one of the transmitted bits. The last-stage on-demand expansion process includes expanding K paths at the tree level 2NT−1 (NT=number of transmit antennas) on-demand to only 2K−1 lowest Partial Euclidean Distance (PED) paths at last tree level 2NT. The relaxed LLR computation scheme includes approximating LLR computations by assuming that discarded path PED is greater than or equal K-Best path PED.
    • 用于软输出K-Best MIMO检测的方法包括计算用于发送位的估计符号向量和对数似然比(LLR)值。 该方法包括相关的丢弃路径选择过程,最后一阶段按需扩展过程以及松弛的LLR计算过程。 相关丢弃路径选择过程包括分析每个中间树级别的K-Best路径和丢弃路径,并且仅选择那些被丢弃的路径用于进一步处理,这将有助于至少一个发送位的LLR计算。 最后阶段的按需扩展过程包括根据需要在树级别2NT-1(NT =发射天线的数量)上将K路径扩展到最后树级别2NT处的仅2K-1最小部分欧几里德距离(PED)路径。 松弛的LLR计算方案包括通过假设丢弃的路径PED大于或等于K-最佳路径PED来近似LLR计算。
    • 2. 发明申请
    • Method and System for a Low-Complexity Soft-Output MIMO Detection
    • 低复杂度软输出MIMO检测方法与系统
    • US20120134451A1
    • 2012-05-31
    • US13149743
    • 2011-05-31
    • Dimpesh PatelMahdi ShabanyGlenn Gulak
    • Dimpesh PatelMahdi ShabanyGlenn Gulak
    • H04L27/00
    • H04B7/0456H04L25/03203
    • An approach for Soft-output K-Best MIMO detection comprises computing an estimated symbol vector and Log-Likelihood Ratio (LLR) values for transmitted bits. The approach includes a relevant discarded paths selection process, a last-stage on-demand expansion process, and a relaxed LLR computation process. The relevant discarded paths selection process includes analyzing the K-Best paths and discarded paths at each intermediate tree level and selecting only those discarded paths for further processing that will help in LLR computation for at least one of the transmitted bits. The last-stage on-demand expansion process includes expanding K paths at the tree level 2NT−1 (NT=number of transmit antennas) on-demand to only 2K−1 lowest Partial Euclidean Distance (PED) paths at last tree level 2NT. The relaxed LLR computation scheme includes approximating LLR computations by assuming that discarded path PED is greater than or equal K-Best path PED.
    • 用于软输出K-Best MIMO检测的方法包括计算用于发送位的估计符号向量和对数似然比(LLR)值。 该方法包括相关的丢弃路径选择过程,最后一阶段按需扩展过程以及松弛的LLR计算过程。 相关丢弃路径选择过程包括分析每个中间树级别的K-Best路径和丢弃路径,并且仅选择那些被丢弃的路径用于进一步处理,这将有助于至少一个发送位的LLR计算。 最后阶段的按需扩展过程包括根据需要在树级别2NT-1(NT =发射天线的数量)上将K路径扩展到最后树级别2NT处的仅2K-1最小部分欧几里德距离(PED)路径。 松弛的LLR计算方案包括通过假设丢弃的路径PED大于或等于K-最佳路径PED来近似LLR计算。
    • 3. 发明授权
    • Signal processing block for a receiver in wireless communication
    • 用于无线通信中的接收机的信号处理块
    • US09318813B2
    • 2016-04-19
    • US12786288
    • 2010-05-24
    • Dimpesh PatelGlenn GulakMahdi Shabany
    • Dimpesh PatelGlenn GulakMahdi Shabany
    • G06F17/16H01Q23/00H01Q21/28
    • H01Q23/00G06F17/16H01Q21/28
    • A QRD processor for computing input signals in a receiver for wireless communication relies upon a combination of multi-dimensional Givens Rotations, Householder Reflections and conventional two-dimensional (2D) Givens Rotations, for computing the QRD of matrices. The proposed technique integrates the benefits of multi-dimensional annihilation capability of Householder reflections plus the low-complexity nature of the conventional 2D Givens rotations. Such integration increases throughput and reduces the hardware complexity, by first decreasing the number of rotation operations required and then by enabling their parallel execution. A pipelined architecture is presented (290) that uses un-rolled pipelined CORDIC processors (245a to 245d) iteratively to improve throughput and resource utilization, while reducing the gate count.
    • 用于在无线通信的接收机中计算输入信号的QRD处理器依赖于多维Givens旋转,Householder反射和常规二维(2D)Givens旋转的组合,用于计算矩阵的QRD。 所提出的技术整合了众议院反思的多维湮灭能力的好处加上常规2D Givens旋转的低复杂度性质。 这种集成通过首先减少所需的旋转操作数量,然后通过使其并行执行来增加吞吐量并降低硬件复杂性。 提出了一种流水线架构(290),它可以迭代地使用未压缩的流水线CORDIC处理器(245a到245d)来提高吞吐量和资源利用率,同时减少门数。
    • 4. 发明申请
    • SIGNAL PROCESSING BLOCK FOR A RECEIVER IN WIRELESS COMMUNICATION
    • 无线通信接收机的信号处理块
    • US20110264721A1
    • 2011-10-27
    • US12786288
    • 2010-05-24
    • Dimpesh PatelGlenn GulakMahdi Shabany
    • Dimpesh PatelGlenn GulakMahdi Shabany
    • G06F17/16G06F5/01
    • H01Q23/00G06F17/16H01Q21/28
    • A QRD processor for computing input signals in a receiver for wireless communication relies upon a combination of multi-dimensional Givens Rotations, Householder Reflections and conventional two-dimensional (2D) Givens Rotations, for computing the QRD of matrices. The proposed technique integrates the benefits of multi-dimensional annihilation capability of Householder reflections plus the low-complexity nature of the conventional 2D Givens rotations. Such integration increases throughput and reduces the hardware complexity, by first decreasing the number of rotation operations required and then by enabling their parallel execution. A pipelined architecture is presented (290) that uses un-rolled pipelined CORDIC processors (245a to 245d) iteratively to improve throughput and resource utilization, while reducing the gate count.
    • 用于在无线通信的接收机中计算输入信号的QRD处理器依赖于多维Givens旋转,Householder反射和常规二维(2D)Givens旋转的组合,用于计算矩阵的QRD。 所提出的技术整合了众议院反思的多维湮灭能力的好处加上常规2D Givens旋转的低复杂度性质。 这种集成通过首先减少所需的旋转操作数量,然后通过使其并行执行来增加吞吐量并降低硬件复杂性。 提出了一种流水线架构(290),它可以迭代地使用未压缩的流水线CORDIC处理器(245a到245d)来提高吞吐量和资源利用率,同时减少门数。
    • 5. 发明授权
    • Low complexity optimal soft MIMO receiver
    • 低复杂度最优软MIMO接收机
    • US08799751B2
    • 2014-08-05
    • US13242808
    • 2011-09-23
    • Mahdi ShabanyRoya Doostnejad
    • Mahdi ShabanyRoya Doostnejad
    • H03M13/03
    • H04B7/0413H04L25/03178H04L25/03318H04L25/067H04L27/38H04L2025/0342H04L2025/03426
    • A low-complexity optimal soft MIMO detector is provided for a general spatial multiplexing (SM) systems with two transmit and NR receive antennas. The computational complexity of the proposed scheme is independent from the operating signal-to-noise ratio (SNR) and grows linearly with the constellation order. It provides the optimal maximum likelihood (ML) solution through the introduction of an efficient Log-likelihood ratio (LLR) calculation method, avoiding the exhaustive search over all possible nodes. The intrinsic parallelism makes it an appropriate option for implementation on DSPs, FPGAs, or ASICs. In specific, this MIMO detection architecture is very suitable to be applied in WiMax receivers based on IEEE 802.16e/m in both downlink (subscriber station) and uplink (base station).
    • 为具有两个发射和NR个接收天线的通用空间复用(SM)系统提供了一种低复杂度最优软MIMO检测器。 所提出的方案的计算复杂度独立于操作信噪比(SNR),并与星座顺序线性增长。 它通过引入有效的对数似然比(LLR)计算方法来提供最佳最大似然(ML)解决方案,避免在所有可能的节点上进行详尽的搜索。 内在的并行性使其成为在DSP,FPGA或ASIC上实现的适当选择。 具体来说,这种MIMO检测架构非常适合于在下行链路(用户站)和上行链路(基站)中基于IEEE 802.16e / m的WiMax接收机中应用。
    • 6. 发明申请
    • LOW COMPLEXITY OPTIMAL SOFT MIMO RECEIVER
    • 低复杂度最优软MIMO接收机
    • US20090232241A1
    • 2009-09-17
    • US12046747
    • 2008-03-12
    • Mahdi ShabanyRoya Doostnejad
    • Mahdi ShabanyRoya Doostnejad
    • H04L5/12H04B7/02
    • H04B7/0413H04L25/03178H04L25/03318H04L25/067H04L27/38H04L2025/0342H04L2025/03426
    • A low-complexity optimal soft MIMO detector is provided for a general spatial multiplexing (SM) systems with two transmit and NR receive antennas. The computational complexity of the proposed scheme is independent from the operating signal-to-noise ratio (SNR) and grows linearly with the constellation order. It provides the optimal maximum likelihood (ML) solution through the introduction of an efficient Log-likelihood ratio (LLR) calculation method, avoiding the exhaustive search over all possible nodes. The intrinsic parallelism makes it an appropriate option for implementation on DSPs, FPGAs, or ASICs. In specific, this MIMO detection architecture is very suitable to be applied in WiMax receivers based on IEEE 802.16e/m in both downlink (subscriber station) and uplink (base station).
    • 为具有两个发射和NR个接收天线的通用空间复用(SM)系统提供了一种低复杂度最优软MIMO检测器。 所提出的方案的计算复杂度独立于操作信噪比(SNR),并与星座顺序线性增长。 它通过引入有效的对数似然比(LLR)计算方法来提供最佳最大似然(ML)解决方案,避免在所有可能的节点上进行详尽的搜索。 内在的并行性使其成为在DSP,FPGA或ASIC上实现的适当选择。 具体来说,这种MIMO检测架构非常适合于在下行链路(用户站)和上行链路(基站)中基于IEEE 802.16e / m的WiMax接收机中应用。
    • 7. 发明申请
    • LOW COMPLEXITY OPTIMAL SOFT MIMO RECEIVER
    • 低复杂度最优软MIMO接收机
    • US20120014483A1
    • 2012-01-19
    • US13242808
    • 2011-09-23
    • Mahdi ShabanyRoya Doostnejad
    • Mahdi ShabanyRoya Doostnejad
    • H04L27/06
    • H04B7/0413H04L25/03178H04L25/03318H04L25/067H04L27/38H04L2025/0342H04L2025/03426
    • A low-complexity optimal soft MIMO detector is provided for a general spatial multiplexing (SM) systems with two transmit and NR receive antennas. The computational complexity of the proposed scheme is independent from the operating signal-to-noise ratio (SNR) and grows linearly with the constellation order. It provides the optimal maximum likelihood (ML) solution through the introduction of an efficient Log-likelihood ratio (LLR) calculation method, avoiding the exhaustive search over all possible nodes. The intrinsic parallelism makes it an appropriate option for implementation on DSPs, FPGAs, or ASICs. In specific, this MIMO detection architecture is very suitable to be applied in WiMax receivers based on IEEE 802.16e/m in both downlink (subscriber station) and uplink (base station).
    • 为具有两个发射和NR个接收天线的通用空间复用(SM)系统提供了一种低复杂度最优软MIMO检测器。 所提出的方案的计算复杂度独立于操作信噪比(SNR),并与星座顺序线性增长。 它通过引入有效的对数似然比(LLR)计算方法来提供最佳最大似然(ML)解决方案,避免在所有可能的节点上进行详尽的搜索。 内在的并行性使其成为在DSP,FPGA或ASIC上实现的适当选择。 具体来说,这种MIMO检测架构非常适合于在下行链路(用户站)和上行链路(基站)中基于IEEE 802.16e / m的WiMax接收机中应用。
    • 8. 发明授权
    • Low complexity optimal soft MIMO receiver
    • 低复杂度最优软MIMO接收机
    • US08060811B2
    • 2011-11-15
    • US12046747
    • 2008-03-12
    • Mahdi ShabanyRoya Doostnejad
    • Mahdi ShabanyRoya Doostnejad
    • H03M13/03
    • H04B7/0413H04L25/03178H04L25/03318H04L25/067H04L27/38H04L2025/0342H04L2025/03426
    • A low-complexity optimal soft MIMO detector is provided for a general spatial multiplexing (SM) systems with two transmit and NR receive antennas. The computational complexity of the proposed scheme is independent from the operating signal-to-noise ratio (SNR) and grows linearly with the constellation order. It provides the optimal maximum likelihood (ML) solution through the introduction of an efficient Log-likelihood ratio (LLR) calculation method, avoiding the exhaustive search over all possible nodes. The intrinsic parallelism makes it an appropriate option for implementation on DSPs, FPGAs, or ASICs. In specific, this MIMO detection architecture is very suitable to be applied in WiMax receivers based on IEEE 802.16e/m in both downlink (subscriber station) and uplink (base station).
    • 为具有两个发射和NR个接收天线的通用空间复用(SM)系统提供了一种低复杂度最优软MIMO检测器。 所提出的方案的计算复杂度独立于操作信噪比(SNR),并与星座顺序线性增长。 它通过引入有效的对数似然比(LLR)计算方法来提供最佳最大似然(ML)解决方案,避免在所有可能的节点上进行详尽的搜索。 内在的并行性使其成为在DSP,FPGA或ASIC上实现的适当选择。 具体来说,这种MIMO检测架构非常适合于在下行链路(用户站)和上行链路(基站)中基于IEEE 802.16e / m的WiMax接收机中应用。