会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明授权
    • Oligomer functionalized nanotubes and composites formed therewith
    • 低聚官能化纳米管及其形成的复合材料
    • US08674134B2
    • 2014-03-18
    • US13162422
    • 2011-06-16
    • Alexander K. ZettlToby SainsburyJean M. J. Fréchet
    • Alexander K. ZettlToby SainsburyJean M. J. Fréchet
    • C07C233/65B82Y40/00B82Y30/00
    • C07C233/65B82Y30/00B82Y40/00C07C211/44C07C233/80C08J5/005C08J2377/06
    • Disclosed herein is a sequential functionalization methodology for the covalent modification of nanotubes with between one and four repeat units of a polymer. Covalent attachment of oligomer units to the surface of nanotubes results in oligomer units forming an organic sheath around the nanotubes, polymer-functionalized-nanotubes (P-NTs). P-NTs possess chemical functionality identical to that of the functionalizing polymer, and thus provide nanoscale scaffolds which may be readily dispersed within a monomer solution and participate in the polymerization reaction to form a polymer-nanotube/polymer composite. Formation of polymer in the presence of P-NTs leads to a uniform dispersion of nanotubes within the polymer matrix, in contrast to aggregated masses of nanotubes in the case of pristine-NTs. The covalent attachment of oligomeric units to the surface of nanotubes represents the formation of a functional nanoscale building block which can be readily dispersed and integrated within the polymer to form a novel composite material.
    • 本文公开了用聚合物的一至四个重复单元共价修饰纳米管的顺序官能化方法。 寡聚体单元与纳米管表面的共价连接导致形成纳米管周围的有机鞘的低聚物单元,聚合物官能化的纳米管(P-NT)。 P-NT具有与官能化聚合物相同的化学功能,因此提供纳米级支架,其可以容易地分散在单体溶液中并参与聚合反应以形成聚合物 - 纳米管/聚合物复合材料。 在存在P-NT的情况下,聚合物的形成导致纳米管在聚合物基质内的均匀分散,与原始NT的情况下的纳米管的聚集体相反。 低聚单元与纳米管表面的共价连接代表形成功能性纳米级结构单元,其可以容易地分散并整合在聚合物内以形成新的复合材料。
    • 8. 发明授权
    • Nanomechanical resonance detector
    • 纳米机械共振检测器
    • US08567249B2
    • 2013-10-29
    • US12543359
    • 2009-08-18
    • Jeffrey C. GrossmanAlexander K. Zettl
    • Jeffrey C. GrossmanAlexander K. Zettl
    • G01H13/00
    • G01H13/00
    • An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.
    • 纳米机械频率检测器的实施例包括支撑结构和耦合到支撑结构的多个细长纳米结构。 每个细长的纳米结构具有特定的谐振频率。 多个细长纳米结构具有一定范围的谐振频率。 识别物体的方法的实施例包括将物体引入纳米机械共振检测器。 通过纳米机械共振检测器的至少一个细长纳米结构的共振响应表示物体的振动模式。 识别本发明的分子种类的方法的实施方案包括将分子种类引入纳米机械共振检测器。 通过纳米机械共振检测器的至少一个细长纳米结构的共振响应指示分子种类的振动模式。
    • 10. 发明授权
    • Nanocrystal powered nanomotor
    • 纳米晶纳米电机
    • US07863798B2
    • 2011-01-04
    • US11229935
    • 2005-09-19
    • Brian C. ReganAlexander K. ZettlShaul Aloni
    • Brian C. ReganAlexander K. ZettlShaul Aloni
    • H02N11/00H02N1/04
    • B81B3/0021B81B2201/038B82Y15/00B82Y30/00Y10S977/725Y10S977/733Y10S977/752Y10T117/1004
    • A nanoscale nanocrystal which may be used as a reciprocating motor is provided, comprising a substrate having an energy differential across it, e.g. an electrical connection to a voltage source at a proximal end; an atom reservoir on the substrate distal to the electrical connection; a nanoparticle ram on the substrate distal to the atom reservoir; a nanolever contacting the nanoparticle ram and having an electrical connection to a voltage source, whereby a voltage applied between the electrical connections on the substrate and the nanolever causes movement of atoms between the reservoir and the ram. Movement of the ram causes movement of the nanolever relative to the substrate. The substrate and nanolever preferably comprise multiwalled carbon nanotubes (MWNTs) and the atom reservoir and nanoparticle ram are preferably metal (e.g. indium) deposited as small particles on the MWNTs. The substrate may comprise a silicon chip that has been fabricated to provide the necessary electrodes and other electromechanical structures, and further supports an atomic track, which may comprise an MWNT.
    • 提供了可用作往复式电动机的纳米级纳米晶体,其包括具有跨过其的能量差异的衬底。 在近端处与电压源的电连接; 基板远离电连接的原子储存器; 位于原子储存器远端的衬底上的纳米颗粒柱塞; 纳米级接触纳米颗粒柱塞并且具有与电压源的电连接,由此施加在衬底上的电连接和纳米器之间的电压引起原子在储存器和柱塞之间的移动。 柱塞的移动导致纳米级器件相对于衬底的移动。 衬底和纳米棒优选地包括多壁碳纳米管(MWNT),并且原子储存器和纳米颗粒柱塞优选是作为小颗粒沉积在MWNT上的金属(例如铟)。 衬底可以包括硅芯片,其被制造成提供必要的电极和其它机电结构,并且还支持可以包括MWNT的原子轨道。