会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Modulating pH-sensitive binding using non-natural amino acids
    • 使用非天然氨基酸调节pH敏感结合
    • US20050260711A1
    • 2005-11-24
    • US11094625
    • 2005-03-30
    • Deepshikha DattaWilliam GoddardDavid TirrellJoyce Peng
    • Deepshikha DattaWilliam GoddardDavid TirrellJoyce Peng
    • C07H21/04C07K16/32C07K16/44C12N5/06C12P21/06
    • C07K16/32
    • The invention provides methods, systems and reagents for regulating pH-sensitive protein interaction by incorporating non-natural amino acids into the protein (e.g. an antibody, or its functional fragment, derivative, etc.). The invention also relates to specific uses in regulating pH-sensitive binding of antibodies to tumor site, by conferring enhanced tumor-specificity/selectivity. In that embodiment, the non-natural amino acids preferably have desirable side-chain pKa's, such that at below physiological pH (e.g. about pH 6.3-6.5) the non-natural amino acid confer enhanced binding to tumor antigens in acidic environments. Such non-natural amino acids can be incorporated by any suitable means, such as by utilizing a modified aminoacyl-tRNA synthetase to charge the nonstandard amino acid to a modified tRNA, which forms strict Watson-Crick base-pairing with a codon that normally forms wobble base-pairing with natural tRNAs (e.g. the degenerate codon orthogonal system.
    • 本发明提供了通过将非天然氨基酸掺入蛋白质(例如抗体或其功能片段,衍生物等)来调节pH敏感蛋白质相互作用的方法,系统和试剂。 本发明还涉及通过赋予增强的肿瘤特异性/选择性来调节抗体对肿瘤部位的pH敏感结合的具体用途。 在该实施方案中,非天然氨基酸优选具有所需的侧链pKa,使得在低于生理pH(例如约pH 6.3-6.5)下,非天然氨基酸在酸性环境中赋予增强的与肿瘤抗原的结合。 这样的非天然氨基酸可以通过任何合适的方式并入,例如通过利用修饰的氨酰-tRNA合成酶将非标准氨基酸装入修饰的tRNA,其与通常形成的密码子形成严格的沃森 - 克里克碱基配对 与天然tRNA的摆动碱基配对(如简并密码子正交系统)。
    • 4. 发明授权
    • Carbon based electrocatalysts for fuel cells
    • 用于燃料电池的碳基电催化剂
    • US08247136B2
    • 2012-08-21
    • US11376768
    • 2006-03-15
    • Yushan YanXin WangWenzhen LiMahesh WajeZhongwei ChenWilliam GoddardWei-Qiao Deng
    • Yushan YanXin WangWenzhen LiMahesh WajeZhongwei ChenWilliam GoddardWei-Qiao Deng
    • H01M4/02H01M4/36H01M4/92H01M8/00B05D5/12
    • H01M4/881H01M4/8605H01M4/92H01M4/926H01M8/1004H01M8/1011Y02E60/523
    • Novel proton exchange membrane fuel cells and direct methanol fuel cells with nanostructured components are configured with higher precious metal utilization rate at the electrodes, higher power density, and lower cost. To form a catalyst, platinum or platinum-ruthenium nanoparticles are deposited onto carbon-based materials, for example, single-walled, dual-walled, multi-walled and cup-stacked carbon nanotubes. The deposition process includes an ethylene glycol reduction method. Aligned arrays of these carbon nanomaterials are prepared by filtering the nanomaterials with ethanol. A membrane electrode assembly is formed by sandwiching the catalyst between a proton exchange membrane and a diffusion layer that form a first electrode. The second electrode may be formed using a conventional catalyst. The several layers of the MEA are hot pressed to form an integrated unit. Proton exchange membrane fuel cells and direct methanol fuel cells are developed by stacking the membrane electrode assemblies in a conventional manner.
    • 新型质子交换膜燃料电池和具有纳米结构组分的直接甲醇燃料电池配置在电极上的贵金属利用率更高,功率密度更高,成本更低。 为了形成催化剂,将铂或铂 - 钌纳米颗粒沉积在碳基材料上,例如单壁,双壁,多壁和杯堆叠碳纳米管。 沉积工艺包括乙二醇还原法。 通过用乙醇过滤纳米材料来制备这些碳纳米材料的对准阵列。 通过将催化剂夹在质子交换膜和形成第一电极的扩散层之间形成膜电极组件。 第二电极可以使用常规的催化剂形成。 MEA的几层被热压形成一个集成的单元。 质子交换膜燃料电池和直接甲醇燃料电池通过以常规方式堆叠膜电极组件来开发。
    • 6. 发明申请
    • Detection and reduction of dielectric breakdown in semiconductor devices
    • 检测和减少半导体器件中的介质击穿
    • US20050073678A1
    • 2005-04-07
    • US10950287
    • 2004-09-24
    • Jamil Tahir-KheliWilliam GoddardMasayasu Miyata
    • Jamil Tahir-KheliWilliam GoddardMasayasu Miyata
    • G01N21/66H01L21/66G01J3/00
    • G01N21/66H01L22/00H01L22/24
    • Methods for detecting the breakdown potential of a semiconductor device having a thin dielectric layer are disclosed. The method includes measuring a spectroscopy of the thin dielectric layer and determining whether the spectroscopy exhibits the presence of a breakdown precursor (H2, H interstitial radical, H attached radical, and H attached dimer). Preferably, the method is carried out in the presence of a substantially significant applied electric field across dielectric layer. A semiconductor device tested in accordance with this method is also disclosed. Additionally, methods for reducing dielectric breakdown of a semiconductor device having a thin dielectric layer involving the substitution of a second molecule for H2 molecules present in the dielectric. This second molecule preferably does not react with Si or O to form an undesired attached state and may be an inert gas having a molecular size approximating that of a Hydrogen atom, such as Helium. A semiconductor device made using this method is also disclosed.
    • 公开了一种用于检测具有薄介电层的半导体器件的击穿电位的方法。 该方法包括测量薄介电层的光谱,并确定光谱是否表现出分解前体(H2,H间隙自由基,H连接基团和H连接的二聚体)的存在。 优选地,该方法在跨介电层的基本上有效的施加电场的存在下进行。 还公开了根据该方法测试的半导体器件。 另外,用于减少具有薄介电层的半导体器件的电介质击穿的方法涉及电介质中存在的用于H 2分子的第二分子的取代。 该第二分子优选不与Si或O反应以形成不期望的附着状态,并且可以是分子大小接近氢原子如氦的惰性气体。 还公开了使用该方法制造的半导体器件。
    • 7. 发明申请
    • Method for predicting the behavior of dopant and defect components
    • 用于预测掺杂剂和缺陷组分的行为的方法
    • US20050054197A1
    • 2005-03-10
    • US10406033
    • 2003-04-02
    • Yuzuru SatoMasamitsu UeharaGyeong HwangWilliam Goddard
    • Yuzuru SatoMasamitsu UeharaGyeong HwangWilliam Goddard
    • H01L21/22G06F17/50H01L21/265H01L21/302H01L21/461
    • H01L21/26513G06F17/5018G06F2217/10H01L21/26566H01L21/2658
    • Techniques for predicting the behavior of dopant and defect components in a substrate lattice formed from a substrate material can be implemented in hardware or software. Fundamental data for a set of microscopic processes that can occur during one or more material processing operations is obtained. Such data can include data representing the kinetics of processes in the set of microscopic processes and the energetics and structure of possible states in the material processing operations. From the fundamental data and a set of external conditions, distributions of dopant and defect components in the substrate lattice are predicted. The distributions of one or more fast components are each predicted by calculating the concentration of the particular fast component for a time period before that fast component reaches its pseudo steady state by solving a first relationship and calculating the concentration of that fast component after the time period by solving a second relationship based on other components, the pseudo steady state of a fast component being a state in which the concentration of that fast component is determined by concentrations of other components. The distribution of Bs3Bi, in addition to the distributions of Bs, BsI, BsI2, BsI3, BsBi, BsBi2, BsBi3, BsBiI, BsBiI2, Bs2Bi, Bs2Bi2, I and In, are calculated by solving the first relationship to predict the distribution of boron after annealing, where Bs and Bi represent substitutional boron and interstitial boron, respectively, and I and In represent interstitial silicon and a cluster of n I's, respectively.
    • 用于预测由衬底材料形成的衬底晶格中的掺杂剂和缺陷组分的行为的技术可以在硬件或软件中实现。 获得可在一个或多个材料加工操作期间发生的一组微观工艺的基本数据。 这样的数据可以包括表示微观过程集合中的过程的动力学的数据,以及材料处理操作中可能状态的能量学和结构。 从基础数据和一组外部条件,预测衬底晶格中的掺杂剂和缺陷组分的分布。 一个或多个快速分量的分布各自通过在该快速分量达到其伪稳态之前的时间段内计算特定快速分量的浓度来求解第一关系并计算该时间段之后该快分量的浓度 通过解决基于其他成分的第二关系,快速成分的伪稳定状态是通过其他成分的浓度来确定该快速成分的浓度的状态。 通过求解第一关系来计算Bs3Bi的分布,除了Bs,BsI,BsI2,BsI3,BsBi,BsBi2,BsBi3,BsBiI,BsBiI2,Bs2Bi,Bs2Bi2,I和In的分布外,还分布了硼 退火后,Bs和Bi分别表示取代硼和间隙硼,I和In分别表示间隙硅和n I簇。
    • 8. 发明申请
    • Carbon based electrocatalysts for fuel cells
    • 用于燃料电池的碳基电催化剂
    • US20100159305A1
    • 2010-06-24
    • US11376768
    • 2006-03-15
    • Yushan YanXin WangWenzhen LiMahesh WajeZhongwei ChenWilliam GoddardWei-Qiao Deng
    • Yushan YanXin WangWenzhen LiMahesh WajeZhongwei ChenWilliam GoddardWei-Qiao Deng
    • H01M4/92H01M4/88
    • H01M4/881H01M4/8605H01M4/92H01M4/926H01M8/1004H01M8/1011Y02E60/523
    • Novel proton exchange membrane fuel cells and direct methanol fuel cells with nanostructured components are configured with higher precious metal utilization rate at the electrodes, higher power density, and lower cost. To form a catalyst, platinum or platinum-ruthenium nanoparticles are deposited onto carbon-based materials, for example, single-walled, dual-walled, multi-walled and cup-stacked carbon nanotubes. The deposition process includes an ethylene glycol reduction method. Aligned arrays of these carbon nanomaterials are prepared by filtering the nanomaterials with ethanol. A membrane electrode assembly is formed by sandwiching the catalyst between a proton exchange membrane and a diffusion layer that form a first electrode. The second electrode may be formed using a conventional catalyst. The several layers of the MEA are hot pressed to form an integrated unit. Proton exchange membrane fuel cells and direct methanol fuel cells are developed by stacking the membrane electrode assemblies in a conventional manner.
    • 新型质子交换膜燃料电池和具有纳米结构组分的直接甲醇燃料电池配置在电极上的贵金属利用率更高,功率密度更高,成本更低。 为了形成催化剂,将铂或铂 - 钌纳米颗粒沉积在碳基材料上,例如单壁,双壁,多壁和杯堆叠碳纳米管。 沉积工艺包括乙二醇还原法。 通过用乙醇过滤纳米材料来制备这些碳纳米材料的对准阵列。 通过将催化剂夹在质子交换膜和形成第一电极的扩散层之间形成膜电极组件。 第二电极可以使用常规的催化剂形成。 MEA的几层被热压形成一个集成的单元。 质子交换膜燃料电池和直接甲醇燃料电池通过以常规方式堆叠膜电极组件来开发。