会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • DETECTING FAILURES IN FLEXIBLE MULTISTRAND STEEL STRUCTURES
    • 检测柔性多钢结构中的故障
    • US20090015249A1
    • 2009-01-15
    • US11722710
    • 2005-12-14
    • David John ButtleWilliam Dalzell
    • David John ButtleWilliam Dalzell
    • G01N27/83G01N27/90
    • G01N27/9046
    • A flexible elongate structure, such as a flexible riser (10) for connecting oil and gas wells to floating production platforms, comprising at least one layer (20) of steel wires near the surface which extend at least partly along the length of the structure, can be monitored by inducing a magnetic field in the steel wires using an electromagnetic coil, and monitoring the magnetic flux density near the surface of the structure so as to detect if any wires have broken. Measurements are made at two different frequencies, the lower frequency giving an output dependent both on stresses and on the number of adjacent wires in the layer (20), and the higher frequency giving an output primarily dependent on the number of these wires. By comparing these two measurements a corrected output parameter (P) may be obtained that is indicative only of stress. A break in a wire can be expected to change the stress in that and adjacent wires.
    • 柔性细长结构,例如用于将油井和气井连接到浮动生产平台的柔性提升管(10),包括在表面附近至少部分地沿着结构的长度延伸的至少一层钢线(20) 可以通过使用电磁线圈在钢丝中引起磁场并监测结构表面附近的磁通密度来监测,以便检测是否有任何电线断裂。 测量在两个不同的频率下进行,较低的频率给出的输出取决于应力和层(20)中相邻导线的数量,而较高的频率给出主要取决于这些导线的数量的输出。 通过比较这两个测量,可以获得仅指示应力的校正输出参数(P)。 可以预期导线中的断裂会改变该线和相邻导线的应力。
    • 5. 发明授权
    • Detecting failures in flexible multistrand steel structures
    • 检测柔性多股钢结构的失效
    • US07876096B2
    • 2011-01-25
    • US11722710
    • 2005-12-14
    • David John ButtleWilliam Dalzell
    • David John ButtleWilliam Dalzell
    • G01N27/82
    • G01N27/9046
    • A flexible elongate structure, such as a flexible riser (10) for connecting oil and gas wells to floating production platforms, comprising at least one layer (20) of steel wires near the surface which extend at least partly along the length of the structure, can be monitored by inducing a magnetic field in the steel wires using an electromagnetic coil, and monitoring the magnetic flux density near the surface of the structure so as to detect if any wires have broken. Measurements are made at two different frequencies, the lower frequency giving an output dependent both on stresses and on the number of adjacent wires in the layer (20), and the higher frequency giving an output primarily dependent on the number of these wires. By comparing these two measurements a corrected output parameter (P) may be obtained that is indicative only of stress. A break in a wire can be expected to change the stress in that and adjacent wires.
    • 柔性细长结构,例如用于将油井和气井连接到浮动生产平台的柔性提升管(10),包括在表面附近至少部分地沿着结构的长度延伸的至少一层钢线(20) 可以通过使用电磁线圈在钢丝中引起磁场并监测结构表面附近的磁通密度来监测,以便检测是否有任何电线断裂。 测量在两个不同的频率下进行,较低的频率给出的输出取决于应力和层(20)中相邻导线的数量,而较高的频率给出主要取决于这些导线的数量的输出。 通过比较这两个测量,可以获得仅指示应力的校正输出参数(P)。 可以预期导线中的断裂会改变该线和相邻导线的应力。
    • 6. 发明申请
    • BIAXIAL STRESS MANAGEMENT
    • 双向应力管理
    • US20100236339A1
    • 2010-09-23
    • US12678342
    • 2008-09-24
    • David John ButtleJohn McCarthy
    • David John ButtleJohn McCarthy
    • G01L1/12
    • G01L1/127G01L1/125
    • A method of measuring biaxial stress in an object of a ferromagnetic material in which material in a region (10) in the vicinity of a surface of the object is subjected to a conditioning method by application of a conditioning magnetic field that is at least initially at a high field strength. Values of biaxial stress within the said region are measured with an electromagnetic measuring probe (14) in at least two different orientations, the electromagnetic measuring probe (14) using an alternating measuring magnetic field that is at a field strength well below saturation. The conditioning may subject the region (10) to a low frequency alternating magnetic field (38, 58) initially at a high field strength, and gradually reducing the strength to zero over a decay time period at least equal to the time for many cycles of the low frequency magnetic field. Conditioning the material enables the stress to then be measured more accurately, and enables ambiguities in biaxial stress to be resolved.
    • 一种在铁磁材料的物体中测量双轴应力的方法,其中在物体表面附近的区域(10)中的材料通过施加调节磁场进行调节方法,所述调节磁场至少最初处于 高场强。 所述区域内的双轴应力值以至少两个不同取向的电磁测量探针(14)测量,所述电磁测量探头(14)使用场强远低于饱和度的交变测量磁场。 调节可以使区域(10)最初以高场强度进入低频交变磁场(38,58),并且在衰减时间段内逐渐地将强度降低到零,至少等于许多周期的时间 低频磁场。 调整材料能够更准确地测量应力,并使双轴应力模糊化得到解决。
    • 7. 发明授权
    • Biaxial stress management
    • 双轴压力管理
    • US08316726B2
    • 2012-11-27
    • US12678342
    • 2008-09-24
    • David John ButtleJohn McCarthy
    • David John ButtleJohn McCarthy
    • G01L1/12
    • G01L1/127G01L1/125
    • A method of measuring biaxial stress in an object of a ferromagnetic material in which material in a region (10) in the vicinity of a surface of the object is subjected to a conditioning method by application of a conditioning magnetic field that is at least initially at a high field strength. Values of biaxial stress within the said region are measured with an electromagnetic measuring probe (14) in at least two different orientations, the electromagnetic measuring probe (14) using an alternating measuring magnetic field that is at a field strength well below saturation. The conditioning may subject the region (10) to a low frequency alternating magnetic field (38, 58) initially at a high field strength, and gradually reducing the strength to zero over a decay time period at least equal to the time for many cycles of the low frequency magnetic field. Conditioning the material enables the stress to then be measured more accurately, and enables ambiguities in biaxial stress to be resolved.
    • 一种在铁磁材料的物体中测量双轴应力的方法,其中在物体表面附近的区域(10)中的材料通过施加调节磁场进行调节方法,所述调节磁场至少最初处于 高场强。 所述区域内的双轴应力值以至少两个不同取向的电磁测量探针(14)测量,所述电磁测量探头(14)使用场强远低于饱和度的交变测量磁场。 调节可以使区域(10)最初以高场强度进入低频交变磁场(38,58),并且在衰减时间段内逐渐地将强度降低到零,至少等于许多周期的时间 低频磁场。 调整材料能够更准确地测量应力,并使双轴应力模糊化得到解决。
    • 8. 发明授权
    • Measurement of stress in a ferromagnetic material
    • 测量铁磁材料中的应力
    • US06854336B2
    • 2005-02-15
    • US10433830
    • 2001-12-18
    • David John Buttle
    • David John Buttle
    • G01L1/00F17D5/02G01L1/12G01N27/82G01B7/16
    • G01N27/82F16L2101/30G01L1/125G01L1/127
    • Stress in the wall of a pipe (12) is measured using a pig (10) carrying at least one linear array of probes, so that the probes (30) in the array pass in succession over a location on the pipe wall. Each probe (30) comprises an electromagnetic core (32) with two spaced apart electromagnetic poles (34), and a magnetic sensor (36) arranged to sense the reluctance of that part of the magnetic circuit between the poles (34), and an alternating magnetic field is generated in the electromagnet means and consequently in the pipe wall. Successive probes (30) in the array are oriented differently so that the corresponding orientations of the magnetic field in the pipe wall are different. Preferably the probes (30) also include sensors (38) between the two poles (34) to sense magnetic flux perpendicular to the direction of the free space magnetic field between the poles. The signal from the sensor (36) and (38) enable the stress to be determined. Such an array may be used with any long object of ferromagnetic material.
    • 使用携带至少一个线性阵列探针的猪(10)测量管(12)的壁中的应力,使得阵列中的探针(30)连续地穿过管壁上的位置。 每个探针(30)包括具有两个间隔开的电磁极(34)的电磁铁芯(32)和布置成感测磁极(34)之间磁路部分的磁阻的磁传感器(36) 在电磁铁装置中产生交变磁场,从而在管壁中产生交变磁场。 阵列中的连续探针(30)的取向不同,使得管壁中磁场的相应取向不同。 优选地,探针(30)还包括在两个极(34)之间的传感器(38),以感测垂直于两极之间的自由空间磁场方向的磁通量。 来自传感器(36)和(38)的信号使得能够确定应力。 这种阵列可以与铁磁材料的任何长的物体一起使用。
    • 10. 发明授权
    • Measurement with a magnetic field
    • 用磁场测量
    • US07215117B2
    • 2007-05-08
    • US10492135
    • 2002-10-07
    • David John Buttle
    • David John Buttle
    • G01B7/24G01N27/72
    • G01N27/9053G01N3/32G01N19/08G01N27/72G01N2203/0019G01N2203/0073G01N2203/0244G01N2203/0635G01R33/12
    • Material properties such as stress in a ferromagnetic material may be measured using an electromagnetic probe. While generating an alternating magnetic field in the object, and sensing the resulting magnetic field with a sensor, the signals from the magnetic sensor may be resolved into in-phase and quadrature components. The signals are affected by both geometrical parameters such as lift-off and by material properties, but these influences may be separated by mapping the in-phase and quadrature components directly into material property and lift-off components, and hence a material property and/or the lift-off may be determined. The mapping may be represented in the impedance plane as two sets of contours representing signal variation with lift-off (A) (for different values of stress) and signal variation with stress (B) (for different values of lift-off), the contours of both sets (A, B) being curved. The stress contours (B) intersect any one liftoff contour (A) at a constant angle. Hence calibration measurements taken along a few contours of each set enable the positions of the other contours of each set to be determined.
    • 诸如铁磁材料中的应力的材料特性可以使用电磁探针来测量。 当在物体中产生交变磁场并且用传感器感测所得到的磁场时,来自磁传感器的信号可以被分解为同相和正交分量。 这些信号受诸如剥离和材料特性等几何参数的影响,但是这些影响可以通过将同相和正交成分直接映射到材料性质和剥离部件中而分离,因此材料性质和/ 或者可以确定剥离。 映射可以在阻抗平面中表示为两组轮廓,表示具有提升(A)(对于不同的应力值)和信号随应力(B)的变化的信号变化(对于不同的提升值), 两组(A,B)的轮廓曲线。 应力轮廓(B)以恒定的角度与任何一个离开轮廓(A)相交。 因此,沿着每组的几个轮廓进行的校准测量使得能够确定每组的其它轮廓的位置。