会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Current leakage compensation circuit and method
    • 电流泄漏补偿电路及方法
    • US06667650B2
    • 2003-12-23
    • US10266885
    • 2002-10-08
    • David A. GammieJeffrey B. ParfenchuckDavid M. JonesJerry L. Doorenbos
    • David A. GammieJeffrey B. ParfenchuckDavid M. JonesJerry L. Doorenbos
    • G06G712
    • H03F1/302
    • A leakage compensation circuit and technique is provided that compensates for losses in a referenced current of an amplifier circuit due to leakage elements. The leakage compensation circuit is configured to inject current substantially equal in magnitude to the leakage current into one or more junctions of the amplifier circuit to compensate for lost referenced current due to leakage. As a result, the amplifier circuit and various devices can realize the flow of the reference current as substantially intended without detrimental effects of leakage current, thus maintaining the integrity of the referenced current. The leakage compensation circuit comprises an array of compensation regions configured to approximate the collective loss that is created by the leakage elements and provide a compensation current substantially equal in magnitude to one or more junctions to compensate for lost referenced current.
    • 提供一种泄漏补偿电路和技术,其补偿由于泄漏元件引起的放大器电路的参考电流中的损耗。 泄漏补偿电路被配置为将大小相等于泄漏电流的电流注入放大器电路的一个或多个结,以补偿由于泄漏引起的丢失的参考电流。 结果,放大器电路和各种器件可以实现基本上预期的参考电流的流动,而不会有泄漏电流的有害影响,从而保持参考电流的完整性。 泄漏补偿电路包括补偿区域的阵列,其被配置为近似由泄漏元件产生的共同损耗,并提供与一个或多个结点基本相等的补偿电流,以补偿丢失的参考电流。
    • 4. 发明授权
    • Bandgap reference curvature compensation circuit
    • 带隙参考曲率补偿电路
    • US06255807B1
    • 2001-07-03
    • US09691638
    • 2000-10-18
    • Jerry L. DoorenbosDavid M. Jones
    • Jerry L. DoorenbosDavid M. Jones
    • G05F316
    • G05F3/30Y10S323/907
    • A temperature curvature compensation technique and circuit can be realized through the generation of a temperature curvature compensation voltage provided by measuring the difference between the base-emitter voltage Vbe of two different transistors operating at two different temperature coefficient quiescent currents. This voltage difference measured between two such transistors results in a scaled voltage that is representative of the temperature curvature of the base-emitter voltage Vbe of a transistor, and which can then be summed to the bandgap reference output to provide a temperature compensated, bandgap reference voltage. The above method can be carried out in an amplifier circuit configured to receive and sum the temperature curvature compensation voltage and the bandgap reference output voltage into the temperature compensated, bandgap reference voltage. In addition, the summing of the temperature curvature compensation voltage and the bandgap reference output voltage may be realized through the application of a dual differential pair amplifier configuration which operates as a gm source. Further, scaling of the respective input voltages for each differential pair can be provided by the amplifier circuit. Moreover, the dual differential pair amplifier may be incorporated into a buffer amplifier configuration to receive a bandgap reference voltage and provide a buffered output or, integrated with a bandgap reference circuit directly into an amplifier circuit.
    • 温度曲率补偿技术和电路可以通过产生通过测量以两种不同温度系数静态电流工作的两个不同晶体管的基极 - 发射极间电压Vbe之间的差提供的温度曲率补偿电压来实现。 在两个这样的晶体管之间测量的这个电压差导致代表晶体管的基极 - 发射极电压Vbe的温度曲率的缩放电压,然后可以将其相加到带隙基准输出以提供温度补偿的带隙基准 电压。 上述方法可以在放大器电路中进行,该放大器电路被配置为将温度曲率补偿电压和带隙参考输出电压接收并加到温度补偿带隙参考电压中。 此外,温度曲率补偿电压和带隙参考输出电压的相加可以通过应用作为gm源工作的双差分对放大器配置来实现。 此外,放大电路可以提供每个差分对的各个输入电压的缩放。 此外,双差分对放大器可以并入缓冲放大器配置中以接收带隙参考电压并提供缓冲输出,或者与带隙参考电路集成到放大器电路中。
    • 5. 发明授权
    • Identification address configuration circuit and method without use of dedicated address pins
    • 识别地址配置电路和方法,不使用专用地址引脚
    • US08806083B2
    • 2014-08-12
    • US11803465
    • 2007-05-15
    • Jerry L. Doorenbos
    • Jerry L. Doorenbos
    • G06F3/00G06F13/38
    • G06F13/385G06F13/4291
    • An identification address of a sensor interface device is configured in response to the order of connection of first (DXP1) and second (DXN1) package pins to electrodes of a sensor (Q0). A sensor signal processing circuit (23) has first and second inputs coupled through the first and second pins to the sensor for converting a parameter sensed by the sensor to a different representation. A current is forced through the first pin to produce either a high or low voltage on the first pin depending on the order of connection of the first and second pins to the electrodes of the sensor. A voltage on the first pin is compared with a reference voltage to produce a comparison signal which is mapped to produce the identification address.
    • 响应于第一(DXP1)和第二(DXN1)封装引脚到传感器(Q0)的电极的连接顺序来配置传感器接口装置的识别地址。 传感器信号处理电路(23)具有通过第一和第二引脚耦合到传感器的第一和第二输入,用于将由传感器感测的参数转换成不同的表示。 根据第一和第二引脚与传感器的电极的连接顺序,迫使电流通过第一引脚产生第一引脚上的高电压或低电压。 将第一引脚上的电压与参考电压进行比较,以产生映射以产生识别地址的比较信号。
    • 6. 发明申请
    • Integrating/SAR ADC and method with low integrator swing and low complexity
    • 集成/ SAR ADC和低积分摆幅和低复杂度的方法
    • US20080258959A1
    • 2008-10-23
    • US12072968
    • 2008-02-29
    • Dimitar T. TrifonovJerry L. Doorenbos
    • Dimitar T. TrifonovJerry L. Doorenbos
    • H03M1/12
    • H03M1/145H03M1/46H03M3/46
    • A reconfigurable circuit (10) includes an integrator (30) having switches (SW1-6) for selectively coupling input capacitors (C0,1,2,3,6,7) and integrating capacitors (C4,5) to terminals of the integrator (30) for operation of a hybrid delta-sigma/SAR ADC (400) so as to create a reference voltage value (Vref) equal to the sum of a first voltage (ΔVbe) and a second voltage (Vbe). A first integration is performed to reduce the integrator output voltage swing. A residue (Vresidue) of the integrator is multiplied by 2. Then the second voltage (Vbe) is integrated in a first direction if a comparator (22) coupled to the integrator changes state or in an opposite direction if the comparator does not change state. The first voltage (ΔVbe) is integrated in a direction that causes the integrator output voltage (Vout) to equal either 2×Vresidue−Vref or 2×Vresidue+Vref.
    • 可重新配置电路(10)包括具有用于选择性地将输入电容器(C 0,1,2,3,6,7)和积分电容器(C 4,5)耦合到端子的开关(SW1-6)的积分器(30) 用于操作混合Δ-Σ/ SAR ADC(400)的积分器(30),以便产生等于第一电压(DeltaVbe)和第二电压(Vbe)之和的参考电压值(Vref)。 执行第一次积分以减小积分器输出电压摆幅。 如果比较器(22)耦合到积分器,则如果比较器不改变状态,则将第二电压(Vbe)积分在第一方向上。如果比较器(22)耦合到积分器,则将积分器的残差(Vresidue)乘以2.然后, 。 第一电压(DeltaVbe)集成在使积分器输出电压(Vout)等于2xVresidue-Vref或2xVresidue + Vref的方向上。
    • 8. 发明授权
    • Circuit and method for beta variation compensation in single-transistor temperature sensor
    • 单晶体管温度传感器中β变换补偿的电路和方法
    • US08308358B2
    • 2012-11-13
    • US12456991
    • 2009-06-25
    • Jerry L. Doorenbos
    • Jerry L. Doorenbos
    • G01K7/00
    • G01K7/01H03F1/302H03F2200/447H03F2200/468
    • A circuit (1-2) for compensating for variations in the current gain β of a sensing transistor (Q1) having a collector coupled to a reference voltage (GND) includes a first current mirror (20) having an input coupled to a base of the sensing transistor. A second current mirror (21) has an input coupled to an output of the first current mirror. A current source (13) is coupled to provide emitter current for the sensing transistor. An output of the second current mirror circuit (21) feeds base current of the sensing transistor back to its emitter to cause the collector current of the sensing transistor to be precisely equal to the current (I1) provided by the current source.
    • 用于补偿电流增益变化的电路(1-2) 具有耦合到参考电压(GND)的集电极的感测晶体管(Q1)包括具有耦合到感测晶体管的基极的输入的第一电流镜(20)。 第二电流镜(21)具有耦合到第一电流镜的输出的输入。 电流源(13)被耦合以提供感测晶体管的发射极电流。 第二电流镜电路(21)的输出将感测晶体管的基极电流反馈到其发射极,以使感测晶体管的集电极电流精确地等于由电流源提供的电流(I1)。
    • 10. 发明申请
    • Bipolar transistor anti-saturation clamp using auxiliary bipolar stage, and method
    • 双极晶体管抗饱和钳使用辅助双极级,和方法
    • US20120025891A1
    • 2012-02-02
    • US12804752
    • 2010-07-28
    • Sudarshan UdayashankarJerry L. Doorenbos
    • Sudarshan UdayashankarJerry L. Doorenbos
    • H03K5/08
    • H03K5/08
    • An output stage (1-2) includes a gain circuit (Q1,Q2) for driving a base of a main transistor (Q3) having a collector coupled to an output (18) in response to an input signal V11) which also controls a base of an auxiliary transistor (Q7) having a collector coupled to the output. A clamping transistor (Q6) has a control electrode coupled to the base of the auxiliary transistor, a first electrode coupled to the output, and a second electrode coupled to provide feedback from the output via the gain circuit to the base of the main transistor and to provide feedback from the output to the base of the auxiliary transistor. When the auxiliary transistor goes into deep saturation it causes the clamping transistor to provide negative feedback from the output to the main output stage so as to prevent the main transistor from going into deep saturation.
    • 输出级(1-2)包括用于驱动具有集电极的主晶体管(Q3)的基极的增益电路(Q1,Q2),其响应于输入信号V11而耦合到输出端(18),该输入信号也控制 具有耦合到输出的集电极的辅助晶体管(Q7)的基极。 钳位晶体管(Q6)具有耦合到辅助晶体管的基极的控制电极,耦合到输出的第一电极和耦合以提供从输出经由增益电路到主晶体管的基极的反馈的第二电极,以及 以提供从输出到辅助晶体管的基极的反馈。 当辅助晶体管进入深饱和时,使钳位晶体管从输出到主输出级提供负反馈,以防止主晶体管进入深饱和。