会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and apparatus for decomposing drive error signal noise sources
    • 用于分解驱动误差信号噪声源的方法和装置
    • US5909661A
    • 1999-06-01
    • US866367
    • 1997-05-30
    • Daniel Y. AbramovitchTerril N. HurstRichard H. Henze
    • Daniel Y. AbramovitchTerril N. HurstRichard H. Henze
    • G01R29/26G01R31/28G11B5/55G11B5/596G11B7/09G11B21/08G11B21/10G06F15/00
    • G11B5/59688G11B21/081G11B21/10G11B5/553G11B5/59605G11B7/09G01R31/2837
    • A process and apparatus is described to break down the Position Error Signal (PES) of a magnetic or optical disk or tape drive to its contributing components. (In the case of the optical disk drive, the method is actually two different PESs, Focus Error Signal (FES) and Tracking Error Signal (TES).) This method is based on three concepts: an understanding of how Bode's Integral Theorem ties into noise measurements, a measurement methodology that allows for the isolation of individual noise sources, and a system model that allows these sources to be recombined to form the drive's Position Error Signal. The method measures frequency response functions and output power spectra of each servo system element. Each input noise spectrum can then be inferred and applied to the closed loop model to determine its effect on the PES uncertainty. The method allows the user to identify and rank the most critical noise sources in the positioning mechanism of a drive. This allows for optimization of the drive positioning control loop(s) by suitable design choices. Such choices may include--but are not limited to--optimization of the position encoding on the data storage surface (such as groove dimensions in an optical drive), optimization of the position signal detection method (such as the demodulation method on a magnetic disk or tape drive), and optimization of the actuator design. Such optimization is far more difficult without this invention because it is very difficult to identify which improvements are most helpful.
    • 描述了将磁盘或光盘或磁带驱动器的位置误差信号(PES)分解成其贡献部件的过程和装置。 (在光盘驱动器的情况下,该方法实际上是两个不同的PES,聚焦误差信号(FES)和跟踪误差信号(TES))。这种方法基于三个概念:了解波德的积分定理如何与 噪声测量,允许隔离单个噪声源的测量方法,以及允许将这些源重新组合以形成驱动器的位置误差信号的系统模型。 该方法测量每个伺服系统元件的频率响应函数和输出功率谱。 然后可以推断每个输入噪声谱,并将其应用于闭环模型,以确定其对PES不确定度的影响。 该方法允许用户在驱动器的定位机构中识别和排列最关键的噪声源。 这允许通过适当的设计选择优化驱动器定位控制回路。 这样的选择可以包括但不限于数据存储表面上的位置编码的优化(例如光驱中的凹槽尺寸),优化位置信号检测方法(诸如在磁盘上的解调方法或 磁带驱动器),以及执行器设计的优化。 没有本发明,这种优化更加困难,因为很难确定哪些改进是最有帮助的。
    • 3. 发明授权
    • Electrophoretic cell and method employing differential mobility
    • 电泳细胞和使用差异迁移率的方法
    • US08491767B2
    • 2013-07-23
    • US12260994
    • 2008-10-29
    • Gary GibsonRichard H. HenzeYoocharn Jeon
    • Gary GibsonRichard H. HenzeYoocharn Jeon
    • G01N27/447G01N27/453
    • G02F1/167G02F2001/1678
    • An electrophoretic cell and methods of switching an electrophoretic cell and moving charged species in an electrophoretic cell employ differential electrophoretic mobilities and a time-varying electric field. The methods include providing first and second charged species that are oppositely charged and have different mobilities. The method of switching further includes inducing a net motion of both of the charged species using the time-varying applied electric field. The induced net motion results in either the first charged species being moved toward the electrode and the second charged species remaining essentially motionless or both of the charged species being moved toward the same electrode. The electrophoretic cell includes the first and second charged species with opposite charge and different mobilities, and further includes the time-varying applied electric field that provides the net motion of the charged species.
    • 电泳单元和电泳单元的切换以及电泳单元中的带电物质的移动方法采用差分电泳迁移率和时变电场。 所述方法包括提供带相反电荷且具有不同迁移率的第一和第二带电物质。 切换方法还包括使用随时间变化的施加电场来诱导两个带电物种的净运动。 诱导的净运动导致第一带电物质朝向电极移动,并且第二带电物质基本上保持不动,或者两个带电物质朝向相同的电极移动。 电泳池包括具有相反电荷和不同迁移率的第一和第二带电物质,并且还包括提供带电物质的净运动的随时间变化的施加电场。
    • 4. 发明申请
    • System And Method For Tri-state Electro-optical Displays
    • 三态电光显示器的系统和方法
    • US20130141780A1
    • 2013-06-06
    • US13816116
    • 2010-08-09
    • Yoocharn JeonRichard H. HenzeJong-Souk YeoGary GibsonJeffrey Todd MabeckPavel KornilovichGregg Alan CombsZhang-Lin Zhou
    • Yoocharn JeonRichard H. HenzeJong-Souk YeoGary GibsonJeffrey Todd MabeckPavel KornilovichGregg Alan CombsZhang-Lin Zhou
    • G02F1/167
    • G02F1/167G02B26/026G02B26/06G02B26/08G02F1/133371G02F1/1676G09G3/34G09G3/344G09G3/3446G09G3/3453
    • There is provided a display including a display including a number of display cells (400). Each of the display cells (400) includes a first electrode (414), which is transparent and disposed over a front surface of a display cell (400). A second electrode (418) is disposed opposite the first electrode (414). A dielectric layer (404) is disposed between the first electrode (414) and the second electrode (418), and is patterned to create a plurality of recessed volumes (408). A fluid is disposed in a volume defined by the first electrode (414), the dielectric layer (404), and the recessed volumes (408). The fluid (410) comprises a dye of a different color from an adjacent display cell (400). Charged particles (412) are disposed within the fluid (410). The display also includes a display driver configured to pack the charged particles (412) against the front of the display cell to create a first optical state, to pack the charged particles (412) against the back of the display cell (400) to create a second optical state, or to pack the particles into the recessed regions (408) to create a third optical state.
    • 提供了一种显示器,包括包括多个显示单元(400)的显示器。 每个显示单元(400)包括透明并设置在显示单元(400)的前表面上的第一电极(414)。 第二电极(418)与第一电极(414)相对设置。 电介质层(404)设置在第一电极(414)和第二电极(418)之间,并被图案化以产生多个凹陷体积(408)。 流体设置在由第一电极(414),电介质层(404)和凹陷体积(408)限定的体积中。 流体(410)包括与相邻显示单元(400)不同颜色的染料。 带电粒子(412)设置在流体(410)内。 所述显示器还包括显示驱动器,所述显示驱动器被配置为将所述带电粒子(412)抵抗所述显示单元的前部打包以产生第一光学状态,以将所述带电粒子(412)压靠在所述显示单元(400)的背面以产生 第二光学状态,或者将颗粒包装到凹陷区域(408)中以产生第三光学状态。
    • 6. 发明授权
    • Servo write method for magnetic tape
    • 磁带伺服写入方式
    • US07206167B2
    • 2007-04-17
    • US10696824
    • 2003-10-30
    • Patricia A. BeckPaul W. PoormanGeorge M. Clifford, Jr.Richard H. Henze
    • Patricia A. BeckPaul W. PoormanGeorge M. Clifford, Jr.Richard H. Henze
    • G11B5/23
    • G11B5/187G11B5/1871G11B5/4893G11B5/584G11B15/62Y10T29/49032Y10T29/49043Y10T29/49048Y10T29/49055Y10T29/4906Y10T29/49789Y10T29/49798
    • A batch fabrication technique is described that increases the manufacturing efficiency of servo write heads and also improves servo pattern definition for fine features, while reducing tape and head wear. Multiple heads are fabricated as a batch from one or more ferrite wafers. A nominally flat, large wafer surface and a contour suitable for uniform photoresist application and planar photolithography permit fine servo pattern definition. A rounded leading edge on the head creates an air bearing to reduce wear of the tape and of the head. Moreover, any head wear occurs at the leading edge rather than in the region of the head where the servo pattern is formed. The servo write head may have a substantially planar head surface. A leading edge is disposed adjacent to the head surface such that the tape contacts the leading edge before passing over the head surface. The leading edge is rounded to form an air bearing between the head surface and the tape. A rounded trailing edge may be disposed adjacent to the head surface such that the tape passes over the trailing edge after passing over the head surface. The head may be formed from an upper ferrite wafer having a non-magnetic spacer. Non-magnetic material is photolithographically defined to produce gaps above the spacer. The non-magnetic material may be photoresist, semiconductor materials, glass, metal or the like. The material may even be removed later to leave air gaps. The non-magnetic material forms a region where the field loops out to intersect the passing tape, thereby transferring a magnetic pattern to tape. Additionally, a lower ferrite wafer may be mated to the upper ferrite wafer to complete a magnetic circuit around the gaps. The upper or lower ferrite wafer may have a channel through which an inductive winding passes. Multiple heads may be formed through batch processing of the upper and lower ferrite wafers.
    • 描述了一种批量制造技术,其提高了伺服写入头的制造效率,并且还改善了精细特征的伺服模式定义,同时减少了磁带和磁头磨损。 多个头部从一个或多个铁氧体晶片制成批次。 标称平坦,大的晶片表面和适用于均匀光刻胶应用和平面光刻的轮廓允许精细的伺服模式定义。 头部圆角的前缘形成一个空气轴承,以减少磁带和磁头的磨损。 此外,任何头部磨损发生在前缘而不是在形成伺服图案的头部的区域中。 伺服写入头可以具有基本平坦的头表面。 前缘邻近头表面设置,使得带在通过头表面之前接触前缘。 前缘是圆形的,以在头表面和带之间形成空气轴承。 圆形的后缘可以邻近头部表面设置,使得带在经过头表面之后越过后缘。 头部可以由具有非磁性间隔物的上部铁氧体晶片形成。 非磁性材料被光刻定义以在间隔物上方产生间隙。 非磁性材料可以是光致抗蚀剂,半导体材料,玻璃,金属等。 材料甚至可以稍后移除以留下空隙。 非磁性材料形成区域,其中磁场循环出来以与通过的磁带相交,从而将磁性图案转印到磁带上。 此外,下部铁氧体晶片可以与上部铁氧体晶片配合,以在该间隙周围形成磁路。 上或下铁素体晶片可以具有感应绕组通过的通道。 可以通过上下铁素体晶片的批量处理形成多个头。