会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Apparatus with off-axis light path for characterizing the luminous
intensity of lamp
    • 具有用于表征灯的发光强度的离轴光路的装置
    • US5818571A
    • 1998-10-06
    • US834628
    • 1997-04-14
    • Keith N. PrettyjohnsStephen L. MarcusStephen F. Sagan
    • Keith N. PrettyjohnsStephen L. MarcusStephen F. Sagan
    • G01J1/42G01J1/00
    • G01J1/4257
    • Apparatus for determining the luminous intensity distribution of an automotive head light employs a curved mirror and a curved screen. A solid state camera is used to obtain a pattern of the head light output from the screen. The system requires a relatively small black box into which the head light output is directed. A beam splitter may be employed to relax the constraints on the positioning of the various components within the box. The setting of the test lamp to first and to second preset lateral angular positions at each of which a pattern is captured and the combining of the two patterns permits the use of components which are practical. The use of a linear CCD array permits economies to be obtained by rotating the test lamp or by scanning the linear array over a sequence of angular positions and by constructing a composite pattern from the patterns so generated. In an alternative embodiment, no beam splitter is used. Instead, the arrangement is an off axis arrangement which employs an aspheric lens at the input to the apparatus to reduce spot size at the screen and to improve the angular resolution measurement capability.
    • 用于确定汽车头灯的发光强度分布的装置采用曲面镜和弯曲屏幕。 使用固态照相机来获得从屏幕输出的头灯的图案。 该系统需要一个相对较小的黑匣子,头灯输出被引导到其中。 可以使用分束器来放松对盒内的各种部件的定位的约束。 将测试灯设置为第一和第二预设横向角位置,其中每个图案被捕获并且两个图案的组合允许使用实用的部件。 使用线性CCD阵列允许通过旋转测试灯或通过在一系列角位置上扫描线性阵列并通过从如此生成的图案构造复合图案来获得经济。 在替代实施例中,不使用分束器。 替代地,该布置是离轴布置,其在设备的输入处采用非球面透镜以减小屏幕处的光点尺寸并改善角度分辨率测量能力。
    • 4. 发明授权
    • Optical line of sight toggle module
    • 光学视线切换模块
    • US09025230B2
    • 2015-05-05
    • US13606190
    • 2012-09-07
    • Stephen F. SaganGerard M. Perron
    • Stephen F. SaganGerard M. Perron
    • G02B26/08G02B26/10G02B27/42
    • G02B26/10G02B27/4233
    • An optical LOS toggle uses two refractive optical elements located in the afocal space of an optical sensor. Optical surfaces of the two elements are shaped appropriately to work in combination with lateral displacements of the two elements such that the LOS angle is shifted. For a prescribed, discrete LOS shift, the optical image quality of the toggle module is corrected by a combination of aspheric shapes and diffractive surfaces on the optical surfaces of the two elements. To maintain performance along any radial direction and simplify fabrication, these aspheric or spheric shapes and diffractive surfaces should be rotationally symmetrical. Image quality is further improved through proper selection of the optical materials used to construct the optical elements.
    • 光学LOS切换使用位于光学传感器的无焦距空间中的两个折射光学元件。 两个元件的光学表面被适当地成形以与两个元件的横向位移组合工作,使得LOS角度偏移。 对于规定的离散LOS移位,通过两个元件的光学表面上的非球面形状和衍射表面的组合来校正肘节模块的光学图像质量。 为了保持任何径向方向的性能并简化制造,这些非球面或球形和衍射表面应该是旋转对称的。 通过适当选择用于构造光学元件的光学材料,进一步提高图像质量。
    • 5. 发明授权
    • Optical device for reversing pupil and image
    • 用于反转瞳孔和图像的光学装置
    • US5325237A
    • 1994-06-28
    • US871433
    • 1992-04-21
    • Stephen F. Sagan
    • Stephen F. Sagan
    • G02B5/04G02B17/02H04N3/09G01J5/48G01J5/54G02B27/10
    • H04N3/09G02B17/02G02B5/04
    • A pupil/image reversal prism (FIG. 2) forms a pupil at an image location. Such a prism has specific applicability in a DCR scheme for a thermal imaging system (FIG. 3a, 31 and 32) in which a passive DCR source is implemented by a pupil imager that forms a pupil onto the image of a thermal scene, thereby providing scene-average radiation to a thermal detector array. The pupil/image reversal prism including an input reflective surface (A), an output reflective surface (B) , a positive reflective surface (C) and an intermediate folding reflective surface (D). The reflective surfaces A and B use total internal reflection to provide both transmissive and reflective operation.
    • 瞳孔/图像反转棱镜(图2)在图像位置处形成瞳孔。 这种棱镜在用于热成像系统(图3a,31和32)的DCR方案中具有特定的适用性,其中无源DCR源由在瞳孔图像上形成瞳孔的光瞳成像器实现,从而提供 场景平均辐射到热探测器阵列。 瞳孔/图像反转棱镜包括输入反射表面(A),输出反射表面(B),正反射表面(C)和中间折叠反射表面(D)。 反射表面A和B使用全内反射来提供透光和反射操作。
    • 6. 发明申请
    • OPTICAL LINE OF SIGHT TOGGLE MODULE
    • 光学模块的光学线
    • US20130063797A1
    • 2013-03-14
    • US13606190
    • 2012-09-07
    • Stephen F. SaganGerard M. Perron
    • Stephen F. SaganGerard M. Perron
    • G02B27/42G02B26/10
    • G02B26/10G02B27/4233
    • An optical LOS toggle uses two refractive optical elements located in the afocal space of an optical sensor. Optical surfaces of the two elements are shaped appropriately to work in combination with lateral displacements of the two elements such that the LOS angle is shifted. For a prescribed, discrete LOS shift, the optical image quality of the toggle module is corrected by a combination of aspheric shapes and diffractive surfaces on the optical surfaces of the two elements. To maintain performance along any radial direction and simplify fabrication, these aspheric or spheric shapes and diffractive surfaces should be rotationally symmetrical. Image quality is further improved through proper selection of the optical materials used to construct the optical elements.
    • 光学LOS切换使用位于光学传感器的无焦距空间中的两个折射光学元件。 两个元件的光学表面被适当地成形以与两个元件的横向位移组合工作,使得LOS角度偏移。 对于规定的离散LOS移位,通过两个元件的光学表面上的非球面形状和衍射表面的组合来校正肘节模块的光学图像质量。 为了保持任何径向方向的性能并简化制造,这些非球面或球形和衍射表面应该是旋转对称的。 通过适当选择用于构造光学元件的光学材料,进一步提高图像质量。
    • 8. 发明授权
    • Apparatus and method for optical relay and reimaging
    • 光继电器和再成像的装置和方法
    • US5140459A
    • 1992-08-18
    • US400597
    • 1989-08-29
    • Stephen F. Sagan
    • Stephen F. Sagan
    • G02B17/00G02B17/08
    • G02B17/008G02B17/08
    • An optical reimager (20) is formed by combining a two-element optical relay (24) with a single-element imager objective (22). The relay (24) comprises a refractive element (26) that is used twice and a mirror (28) that provides a real stop. The reimager can be made diffraction-limited by configuring the mirror with an aspheric surface to correct spherical aberration introduced by both the refractive element (26) and the objective (22), and configuring the objective with an aspheric surface to correct non-spherical aberrations (principally astigmatism and coma). The reimager (20) is described in connection with a thermal imaging application requiring telecentricity and a remote entrance pupil.
    • 通过将双元件光学继电器(24)与单元件成像器物镜(22)组合来形成光学再成像器(20)。 继电器(24)包括使用两次的折射元件(26)和提供实际停止的反射镜(28)。 通过配置具有非球面表面的反射镜来校正由折射元件(26)和物镜(22)引入的球面像差,以及用非球面表面来校正非球面像差的目标,该再造镜可被衍射限制 (主要是散光和昏迷)。 与需要远心的热成像应用和远程入射光瞳相关的再成像器(20)被描述。
    • 10. 发明授权
    • Forward looking infrared imaging system
    • 前瞻性红外成像系统
    • US4983837A
    • 1991-01-08
    • US265365
    • 1988-10-31
    • Erwin E. CooperFranklin L. DavisStephen F. Sagan
    • Erwin E. CooperFranklin L. DavisStephen F. Sagan
    • H04N3/09
    • H04N3/09
    • Apparatus and methods for modifying existing forward looking infrared systems and for forming new forward looking infrared systems. Generally, the system comprises a Galilean afocal system in combination with a reimaging afocal system. A reimaging afocal lens system is formed with at least first and second lenses and a plane for forming an image therebetween. A thermal reference source is positioned in the imaging plane of the reimaging system. The method for modifying an existing forward looking infrared imaging system includes positioning the reimaging system along the optical path of the system between the Galilean lens combination and the scanning device. According to a method for forming a forward looking infrared system an imaging lens system is arranged along an optical path in combination with a detector array to focus collimated radiation upon the detector array. The detector array subtends the field of view along a first direction. A reimaging afocal system is incorporated along the optical path to provide collimated radiation to the imaging lens system and a scanning device is positioned between the reimaging afocal system and the imaging lens system to vary the field of view along a second direction in order to provide a two dimensional image. A Galilean afocal lens system is positioned to receive radiation from a scene and transmit the radiation to the reimaging afocal system.