会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Electrosurgical instrument and method of use
    • 电外科仪器及使用方法
    • US07311709B2
    • 2007-12-25
    • US10448478
    • 2003-05-30
    • Csaba TruckaiJames A. BakerJohn H. Shadduck
    • Csaba TruckaiJames A. BakerJohn H. Shadduck
    • A61B18/12
    • A61B18/1442A61B2018/00077A61B2018/00083A61B2018/00148A61B2018/0063A61B2018/00654A61B2018/00791A61B2018/00797A61B2018/00809A61B2018/1467
    • An electrosurgical medical device and method for creating thermal welds in engaged tissue. In one embodiment, at least one jaw of the instrument defines a tissue engagement plane carrying a variable resistive body of a positive temperature coefficient material that has a selected decreased electrical conductance at each selected increased temperature thereof over a targeted treatment range. The variable resistive body can be engineered to bracket a targeted thermal treatment range, for example about 60° C. to 80° C., at which tissue welding can be accomplished. In one mode of operation, the engagement plane will automatically modulate and spatially localize ohmic heating within the engaged tissue from Rf energy application across micron-scale portions of the engagement surface. In another mode of operation, a variable resistive body will focus conductive heating in a selected portion of the engagement surface.
    • 一种用于在接合组织中产生热焊缝的电外科医疗装置和方法。 在一个实施例中,仪器的至少一个钳口限定了携带正温度系数材料的可变电阻体的组织接合平面,其在目标治疗范围内的每个选定的升高温度下具有选定的降低的电导率。 可变电阻体可以被设计成支撑目标热处理范围,例如约60℃至80℃,在该热处理范围内可以实现组织焊接。 在一种操作模式中,接合平面将自动地调节并且在接合表面的微米级部分的Rf能量施加之间空间地定位所接合组织内的欧姆加热。 在另一种操作模式中,可变电阻体将导电加热聚焦在接合表面的选定部分中。
    • 3. 发明授权
    • Electrosurgical instrument
    • 电外科器械
    • US06926716B2
    • 2005-08-09
    • US10291286
    • 2002-11-09
    • James A BakerCsaba TruckaiJohn H Shadduck
    • James A BakerCsaba TruckaiJohn H Shadduck
    • A61B18/08A61B18/14A61B18/12
    • A61B18/082A61B17/32A61B18/08A61B18/1442A61B2018/00404A61B2018/00601A61B2018/00619A61B2018/087A61B2018/1455A61B2218/002
    • A working end of a surgical instrument that carries first and second jaws for delivering energy to tissue. In a preferred embodiment, at least one jaw of the working end defines a tissue-engagement plane that contacts the targeted tissue. The cross-section of the engagement plane reveals that it defines (i) a first surface conductive portion or a variably resistive matrix of a temperature-sensitive resistive material or a pressure-sensitive resistive material, and (ii) a second surface portion coupled to a fixed resistive material that coupled in series or parallel to a voltage source together with the first portion. In use, the engagement plane will apply active Rf energy to ohmically heat the captured tissue until the point in time that a controller senses an electrical parameter of the tissue such as impedance. Thereafter, the controller switches energy delivery to the second surface portion that is resistively heated to thereby apply energy to tissue by conductive heat transfer.
    • 手术器械的工作端,其携带用于将能量递送至组织的第一和第二钳口。 在优选实施例中,工作端的至少一个钳口限定了接触目标组织的组织接合平面。 接合平面的横截面显示其限定(i)温度敏感电阻材料或压敏电阻材料的第一表面导电部分或可变电阻矩阵,以及(ii)第二表面部分 与第一部分一起串联或并联耦合到电压源的固定电阻材料。 在使用中,接合平面将施加活性Rf能量以欧姆加热所捕获的组织,直到控制器感测组织的电参数(例如阻抗)的时间点为止。 此后,控制器将能量输送切换到被电阻加热的第二表面部分,从而通过导热传递将能量施加到组织。
    • 7. 发明授权
    • Electrosurgical jaw structure for controlled energy delivery
    • 用于受控能量输送的电外科钳口结构
    • US06929644B2
    • 2005-08-16
    • US10032867
    • 2001-10-22
    • Csaba TruckaiJames A. BakerBruno StrulJohn H. Shadduck
    • Csaba TruckaiJames A. BakerBruno StrulJohn H. Shadduck
    • A61B18/14A61B18/12
    • A61B18/1442A61B2018/00077A61B2018/00083A61B2018/00148A61B2018/0063A61B2018/00809
    • A working end of a surgical instrument that carries first and second jaws for delivering energy to tissue. In a preferred embodiment, at least one jaw of the working end defines a tissue-engagement plane that contacts the targeted tissue. The cross-section of the engagement plane reveals that it defines a surface conductive portion that overlies a variably resistive matrix of a temperature-sensitive resistive material or a pressure-sensitive resistive material. An interior of the jaw carries a conductive material or electrode that is coupled to an Rf source and controller. In an exemplary embodiment, the variably resistive matrix can comprise a positive temperature coefficient (PTC) material, such as a ceramic, that is engineered to exhibit a dramatically increasing resistance (i.e., several orders of magnitude) above a specific temperature of the material. In use, the engagement plane will apply active Rf energy to captured tissue until the point in time that the variably resistive matrix is heated to its selected switching range. Thereafter, current flow from the conductive electrode through the engagement surface will be terminated due to the exponential increase in the resistance of variably resistive matrix to provide instant and automatic reduction of Rf energy application. Further, the variably resistive matrix can effectively function as a resistive electrode to thereafter conduct thermal energy to the engaged tissue volume. Thus, the jaw structure can automatically modulate the application of energy to tissue between active Rf heating and passive conductive heating of captured tissue to maintain a target temperature level.
    • 手术器械的工作端,其携带用于将能量递送至组织的第一和第二钳口。 在优选实施例中,工作端的至少一个钳口限定了接触目标组织的组织接合平面。 接合平面的横截面显示它限定了覆盖在温度敏感电阻材料或压敏电阻材料的可变电阻矩阵上的表面导电部分。 钳口的内部承载耦合到Rf源和控制器的导电材料或电极。 在示例性实施例中,可变电阻矩阵可以包括正温度系数(PTC)材料,例如陶瓷,其被工程化以显示高于材料的特定温度的显着增加的电阻(即几个数量级)。 在使用中,接合平面将对被捕获的组织施加活性的Rf能量,直到可变电阻矩阵被加热到其选择的开关范围的时间点为止。 此后,由于可变电阻矩阵的电阻的指数增加,导电电极通过接合表面的电流将终止,以提供即时和自动降低Rf能量应用。 此外,可变电阻矩阵可以有效地用作电阻电极,之后将热能传导到被接合的组织体积。 因此,钳口结构可以自动调节被捕获组织的活性Rf加热和被动导电加热之间的能量对组织的应用以保持目标温度水平。
    • 8. 发明授权
    • Electrosurgical jaw structure for controlled energy delivery
    • 用于受控能量输送的电外科钳口结构
    • US06770072B1
    • 2004-08-03
    • US10308362
    • 2002-12-03
    • Csaba TruckaiJames A. BakerJohn H. Shadduck
    • Csaba TruckaiJames A. BakerJohn H. Shadduck
    • A61B1814
    • A61B18/1445A61B2018/00077A61B2018/00083A61B2018/00148A61B2018/0063A61B2018/1455
    • A working end of a surgical instrument that carries first and second jaws for delivering energy to tissue. In a preferred embodiment, at least one jaw of the working end defines a tissue-engagement plane that contacts the targeted tissue. The cross-section of the engagement plane reveals that it defines a surface conductive portion and an elastomeric body portion. The elastomeric body portion is adapted to flex, deflect and extend laterally when engaging tissue to atraumatically engage tissue at the edges of the working end to create a smooth transition between welded tissue and undamaged tissue. The jaws can further carry a variably resistive matrix of a temperature-sensitive resistive material or a pressure-sensitive resistive material. An interior of the jaw carries a conductive material or electrode that is coupled to an Rf source and controller. In an exemplary embodiment, the variably resistive matrix can comprise a positive temperature coefficient (PTC) material, such as a ceramic, that is engineered to exhibit a dramatically increasing resistance (i.e., several orders of magnitude) above a specific temperature of the material. In use, the engagement plane will apply active Rf energy to captured tissue until the point in time that the variably resistive matrix is heated to its selected switching range. Thereafter, current flow from the conductive electrode through the engagement surface will be terminated due to the exponential increase in the resistance of variably resistive matrix to provide instant and automatic reduction of Rf energy application. Thus, the jaw structure can automatically modulate the application of energy to tissue between active Rf heating and passive conductive heating of captured tissue to maintain a target temperature level.
    • 手术器械的工作端,其携带用于将能量递送至组织的第一和第二钳口。 在优选实施例中,工作端的至少一个钳口限定了接触目标组织的组织接合平面。 接合平面的横截面显示其限定表面导电部分和弹性体主体部分。 弹性体主体部分适于在接合组织时在横向上弯曲,偏转和延伸,以在工作端的边缘处不可靠地接合组织,以在焊接的组织和未损坏的组织之间形成平滑过渡。 钳口可以进一步携带温度敏感的电阻材料或压敏电阻材料的可变电阻矩阵。 钳口的内部承载耦合到Rf源和控制器的导电材料或电极。 在示例性实施例中,可变电阻矩阵可以包括正温度系数(PTC)材料,例如陶瓷,其被工程化以显示高于材料的特定温度的显着增加的电阻(即几个数量级)。 在使用中,接合平面将对被捕获的组织施加活性的Rf能量,直到可变电阻矩阵被加热到其选择的开关范围的时间点为止。 此后,由于可变电阻矩阵的电阻的指数增加,导电电极通过接合表面的电流将终止,以提供即时和自动降低Rf能量应用。 因此,钳口结构可以自动调节被捕获组织的活性Rf加热和被动导电加热之间的能量对组织的应用以保持目标温度水平。