会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Memory array architectures based on a triple-polysilicon source-side injection non-volatile memory cell
    • 基于三重多晶硅源侧注入非易失性存储单元的存储器阵列架构
    • US06563733B2
    • 2003-05-13
    • US09866537
    • 2001-05-24
    • Chun-Mai LiuAlbert KordeschMing-Bing Chang
    • Chun-Mai LiuAlbert KordeschMing-Bing Chang
    • G11C1604
    • H01L29/511G11C16/0425H01L27/115H01L29/42328H01L29/7885
    • A semiconductor memory includes a plurality of memory cells arranged along rows and columns, each cell having a floating gate, a drain region, a source region, a program gate terminal, and a select gate terminal. The program gate terminals of the cells along each row of cells are connected together forming a continuous program gate line. The select gate terminals of the cells along each row of cells are connected together forming a continuous select gate line. The source regions of the cells along each row of cells are connected together forming a continuous source line. The cells along each column are divided into a predesignated number of groups, and the drain regions of the cells in each group are connected to a local bitline extending across the cells in the group of cells. A global bitline extends along every two columns of cells, and is configured to selectively provide electrical connection to the local bitlines along the corresponding two columns of cells. The floating gate of each cell is from a first layer polysilicon, the program gate lines are from a second polysilicon layer, the select gate lines are from a third polysilicon layer, and the source lines are diffusion lines.
    • 半导体存储器包括沿行和列布置的多个存储单元,每个单元具有浮置栅极,漏极区域,源极区域,程序栅极端子和选择栅极端子。 沿着每行单元的单元的程序栅极端子连接在一起形成连续的程序栅极线。 沿着每行单元的单元的选择栅极端子连接在一起形成连续的选择栅极线。 沿着每行单元格的单元格的源区域连接在一起形成连续的源极线。 沿着每列的单元被分成预定数量的组,并且每个组中的单元的漏极区域连接到跨越单元组中的单元格延伸的局部位线。 全局位线沿着每两列单元格延伸,并且被配置为选择性地提供沿着相应的两列单元格的本地位线的电连接。 每个单元的浮置栅极来自第一层多晶硅,编程栅极线来自第二多晶硅层,选择栅极线来自第三多晶硅层,源极线是扩散线。
    • 3. 发明授权
    • Method of forming a flash EEPROM device by employing polysilicon sidewall spacer as an erase gate
    • 通过使用多晶硅侧壁间隔物作为擦除栅极形成快闪EEPROM器件的方法
    • US06261907B1
    • 2001-07-17
    • US09453395
    • 1999-12-03
    • Ming-Bing Chang
    • Ming-Bing Chang
    • H01L21336
    • H01L27/11519G11C16/0416H01L27/105H01L27/115H01L27/11526H01L27/11546H01L29/42328
    • A Flash EEPROM cell employing a sidewall polysilicon spacer as an erase gate. The cell is programmed by source side channel hot electron injection and erased by poly-to-poly tunneling through a poly tunnel oxide between the floating gate and the erase gate. The floating gate is defined by the control gate sidewall spacer which is formed before the floating gate poly self-aligned etch step. The polysilicon sidewall spacer erase gate is formed after growing a poly tunnel oxide on the sidewall of the floating gate poly. Since the poly tunnel oxide thickness is minimized, a fast programming with a low power consumption can be achieved. By using poly-to-poly tunneling erase scheme, a deep source junction is not used and cell size can be significantly reduced. Furthermore, a large sector of cells can be erased simultaneously without a power consumption concern and further Vcc scaling becomes possible.
    • 使用侧壁多晶硅间隔物作为擦除栅极的闪速EEPROM单元。 通过源侧通道热电子注入对单元进行编程,并通过浮动栅极和擦除栅极之间的多晶隧道氧化物进行多对多隧穿扫描。 浮置栅极由在浮栅多自对准蚀刻步骤之前形成的控制栅极侧壁间隔物限定。 在浮栅聚合物的侧壁上生长多晶隧道氧化物之后形成多晶硅侧壁间隔物擦除栅极。 由于多隧道氧化物厚度最小化,所以可以实现具有低功耗的快速编程。 通过使用多重多晶隧道擦除方案,不使用深源结,并可显着减小单元尺寸。 此外,可以同时擦除大扇区的单元,而不需要功耗,并且可以进一步进行Vcc缩放。
    • 4. 发明授权
    • Nonvolatile memory with enhanced carrier generation and method for
programming the same
    • 具有增强载波生成的非易失性存储器和用于编程的方法
    • US5258949A
    • 1993-11-02
    • US620813
    • 1990-12-03
    • Ko-Min ChangMing-Bing Chang
    • Ko-Min ChangMing-Bing Chang
    • G11C17/00G11C16/04G11C16/12H01L21/8246H01L21/8247H01L27/112H01L29/788H01L29/792G11C13/00
    • G11C16/12H01L29/7885
    • Programming speed of a nonvolatile memory is improved by enhancing carrier generation. In one form, a nonvolatile memory has a control gate which overlies a channel region in a substrate. A floating gate overlies a portion of the channel region and is positioned between the substrate and the control gate. A source and a drain are formed in the substrate, being displaced by the channel region. A first programming voltage is applied to the drain to create an electric field at a junction between the drain and channel region. Current is forced into the source and through the substrate in order to enhance carrier generation at the junction between the drain and channel region, thereby increasing an electric field at the junction. A second programming voltage, having a ramp shaped leading edge, is applied to the control gate to increase the electrical field and to program the memory to a predetermined logic state.
    • 通过增强载体生成来提高非易失性存储器的编程速度。 在一种形式中,非易失性存储器具有覆盖在衬底中的沟道区域的控制栅极。 浮动栅极覆盖沟道区的一部分并位于衬底和控制栅之间。 源极和漏极形成在衬底中,被沟道区域置换。 将第一编程电压施加到漏极,以在漏极和沟道区域之间的结处产生电场。 电流被迫进入源极并通过衬底,以便增强在漏极和沟道区域之间的结处的载流子产生,从而增加了结处的电场。 具有斜坡形状的前沿的第二编程电压被施加到控制栅极以增加电场并将存储器编程到预定的逻辑状态。
    • 6. 发明授权
    • Flash eeprom device employing polysilicon sidewall spacer as an erase
gate
    • 使用多晶硅侧壁间隔物作为擦除栅极的闪存器件
    • US5991204A
    • 1999-11-23
    • US72924
    • 1998-05-05
    • Ming-Bing Chang
    • Ming-Bing Chang
    • G11C16/04H01L21/8247H01L27/105H01L27/115H01L29/423
    • G11C16/0416H01L27/105H01L27/115H01L27/11519H01L27/11526H01L27/11546H01L29/42328
    • A Flash EEPROM cell employing a sidewall polysilicon spacer as an erase gate. The cell is programmed by source side channel hot electron injection and erased by poly-to-poly tunneling through a poly tunnel oxide between the floating gate and the erase gate. The floating gate is defined by the control gate sidewall spacer which is formed before the floating gate poly self-aligned etch step. The polysilicon sidewall spacer erase gate is formed after growing a poly tunnel oxide on the sidewall of the floating gate poly. Since the poly tunnel oxide thickness is minimized, a fast programming with a low power consumption can be achieved. By using poly-to-poly tunneling erase scheme, a deep source junction is not used and cell size can be significantly reduced. Furthermore, a large sector of cells can be erased simultaneously without a power consumption concern and further V.sub.cc scaling becomes possible.
    • 使用侧壁多晶硅间隔物作为擦除栅极的闪速EEPROM单元。 通过源侧通道热电子注入对单元进行编程,并通过浮动栅极和擦除栅极之间的多晶隧道氧化物进行多对多隧穿扫描。 浮置栅极由在浮栅多自对准蚀刻步骤之前形成的控制栅极侧壁间隔物限定。 在浮栅聚合物的侧壁上生长多晶隧道氧化物之后形成多晶硅侧壁间隔物擦除栅极。 由于多隧道氧化物厚度最小化,所以可以实现具有低功耗的快速编程。 通过使用多重多晶隧道擦除方案,不使用深源结,并可显着减小单元尺寸。 此外,可以同时擦除大扇区的单元,而不需要功耗,并且可以进一步进行Vcc缩放。
    • 7. 发明授权
    • Flash EEPROM device employing polysilicon sidewall spacer as an erase
gate
    • 使用多晶硅侧壁间隔物作为擦除栅极的闪速EEPROM装置
    • US6125060A
    • 2000-09-26
    • US383283
    • 1999-08-26
    • Ming-Bing Chang
    • Ming-Bing Chang
    • G11C16/04H01L21/8247H01L27/105H01L27/115H01L29/423
    • H01L27/11519G11C16/0416H01L27/105H01L27/115H01L27/11526H01L27/11546H01L29/42328
    • A Flash EEPROM cell employing a sidewall polysilicon spacer as an erase gate. The cell is programmed by source side channel hot electron injection and erased by poly-to-poly tunneling through a poly tunnel oxide between the floating gate and the erase gate. The floating gate is defined by the control gate sidewall spacer which is formed before the floating gate poly self-aligned etch step. The polysilicon sidewall spacer erase gate is formed after growing a poly tunnel oxide on the sidewall of the floating gate poly. Since the poly tunnel oxide thickness is minimized, a fast programming with a low power consumption can be achieved. By using poly-to-poly tunneling erase scheme, a deep source junction is not used and cell size can be significantly reduced. Furthermore, a large sector of cells can be erased simultaneously without a power consumption concern and further V.sub.cc scaling becomes possible.
    • 使用侧壁多晶硅间隔物作为擦除栅极的闪速EEPROM单元。 通过源侧通道热电子注入对单元进行编程,并通过浮动栅极和擦除栅极之间的多晶隧道氧化物进行多对多隧穿扫描。 浮置栅极由在浮栅多自对准蚀刻步骤之前形成的控制栅极侧壁间隔物限定。 在浮栅聚合物的侧壁上生长多晶隧道氧化物之后形成多晶硅侧壁间隔物擦除栅极。 由于多隧道氧化物厚度最小化,所以可以实现具有低功耗的快速编程。 通过使用多重多晶隧道擦除方案,不使用深源结,并可显着减小单元尺寸。 此外,可以同时擦除大扇区的单元,而不需要功耗,并且可以进一步进行Vcc缩放。
    • 8. 发明授权
    • Method to make an asymmetrical LDD structure for deep sub-micron MOSFETS
    • 制造深亚微米MOSFET的非对称LDD结构的方法
    • US5705439A
    • 1998-01-06
    • US635826
    • 1996-04-22
    • Ming-Bing Chang
    • Ming-Bing Chang
    • H01L21/336H01L29/78
    • H01L29/66659H01L29/7835
    • A method for forming an asymmetrical LDD structure is described. A polysilicon gate electrode is formed overlying a layer of gate silicon oxide on the surface of a semiconductor substrate. The surfaces of the semiconductor substrate and the gate electrode are oxidized to form a surface oxide layer. Polysilicon spacers are formed on the sidewalls of the gate electrode wherein one side of the gate electrode is a source side and the other side of the gate electrode is a drain side. The polysilicon spacer on the source side of the gate electrode is removed. First ions are implanted to form heavily doped source and drain regions within the semiconductor substrate not covered by the gate electrode and the polysilicon spacer on the drain side of the gate electrode. Then the drain side polysilicon spacer is removed. Second ions are implanted to form a lightly doped drain region within the semiconductor substrate underlying the removed drain side polysilicon spacer completing the formation of a lightly doped drain structure in the fabrication of an integrated circuit device.
    • 描述了形成不对称LDD结构的方法。 在半导体衬底的表面上形成覆盖一层栅极氧化硅的多晶硅栅电极。 半导体衬底和栅电极的表面被氧化形成表面氧化层。 多晶硅间隔物形成在栅电极的侧壁上,其中栅电极的一侧为源极侧,栅电极的另一侧为漏极侧。 去除栅电极的源极侧的多晶硅间隔物。 注入第一离子以在半导体衬底内形成不被栅极电极和栅电极漏极侧的多晶硅间隔物覆盖的重掺杂源极和漏极区域。 然后去除漏极侧多晶硅间隔物。 注入第二离子,以在去除的漏极侧多晶硅间隔物下面的半导体衬底内形成轻掺杂的漏极区,从而在集成电路器件的制造中完成轻掺杂漏极结构的形成。
    • 10. 发明授权
    • Method for making electrical connections to self-aligned contacts that
extends beyond the photo-lithographic resolution limit
    • 用于连接到自对准触点的电连接的方法,其延伸超出光刻分辨率极限
    • US5612240A
    • 1997-03-18
    • US663439
    • 1996-06-13
    • Ming-Bing Chang
    • Ming-Bing Chang
    • H01L21/28H01L21/8234
    • H01L21/28H01L21/823475Y10S438/947
    • A method was achieved for making electrical connections to FET self-aligned source/drain areas extending the limits of the photolithographic resolution and relaxing the alignment tolerance. FET gate electrodes are formed by patterning a first polysilicon layer having a first insulating layer thereon. Lightly doped drains (LDDs) and insulating first sidewall spacers are then formed. A polycide layer (second polysilicon/silicide layer) having a second insulating thereon is then deposited and patterned. The new method involves etching the second insulating layer and partially into the polycide layer. After removing the photoresist, another dielectric layer is conformally deposited and then anisotropically etched back to form the second sidewall spacers. The remaining polycide layer is then etched using the second insulating layer and the second spacer as a hard mask. Thus, second poly extensions are formed over and onto the first poly and the field oxide. Using this new process, both the second polysilicon layer and the contact layer become alignment insensitive and silicon trenches, caused by misalignment, cannot occur. Furthermore, a minimum gate length, a minimum gate to FOX spacing and a minimum FOX isolation width can be achieved with the existing 0.35 um process technology.
    • 实现了与FET自对准源极/漏极区域的电连接的方法,延伸了光刻分辨率的极限并且放宽了对准公差。 通过对其上具有第一绝缘层的第一多晶硅层进行构图来形成FET栅电极。 然后形成轻掺杂的漏极(LDD)和绝缘的第一侧壁间隔物。 然后沉积并图案化具有第二绝缘层的多晶硅化物层(第二多晶硅/硅化物层)。 该新方法涉及蚀刻第二绝缘层并部分地进入多晶硅化物层。 在去除光致抗蚀剂之后,另外介电层被共形沉积,然后各向异性地回蚀以形成第二侧壁间隔物。 然后使用第二绝缘层和第二间隔物作为硬掩模蚀刻剩余的多晶硅化物层。 因此,在第一多晶氧化物和场氧化物上形成第二多晶延伸。 使用这种新工艺,第二多晶硅层和接触层都变为对准不敏感,并且不会发生由未对准引起的硅沟槽。 此外,使用现有的0.35um工艺技术,可以实现最小栅极长度,最小栅极至FOX间距和最小FOX隔离宽度。