会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Method and apparatus for determining the respective contributions of
borehole and earth formation in gamma ray spectroscopy
    • 用于确定伽马射线光谱法中钻孔和地层各自贡献的方法和装置
    • US5105080A
    • 1992-04-14
    • US679468
    • 1991-04-02
    • Christian StollerRobert A. Adolph
    • Christian StollerRobert A. Adolph
    • G01V5/10
    • G01V5/104G01V5/101
    • A apparatus and an apparatus for determining the respective contributions in spectroscopy measurements of the borehole and the earth formations surrounding the borehole, derived from the detection of gamma rays resulting from the collisions of neutrons with atoms of the formation or the borehole. From gamma rays from a near and far detector, and established, at each depth, responses (e.g. elemental yields) representative of the values of an unknown in the borehole and in the formation. The far detector response is plotted against the near detector response. From the plot and from known conditions of the detection, is derived a closed curve characteristic of the relative contributions of the borehole and the formation in the responses. For each depth, the respective values of the unknown are derived from the position on the plot of the couple of responses for that depth, with respect to the closed curve. For instance, on a plot of C/(C+O) yields, the curve is a parallelogram two concurrent sides of which form a coordinate system; the coordinates of each response corresponds to the values of the unknown respectively for the formation and the borehole.
    • 一种装置和装置,用于确定由探测由中子与地层原子或井眼碰撞而产生的伽马射线的钻孔周围的钻孔和地层的光谱测量中的各自贡献。 来自近距离和远距离探测器的伽马射线,并且在每个深度处确定代表井眼和地层中未知物的值的响应(例如元素产量)。 远检测器响应相对于近检测器响应绘制。 从图的情况和已知的检测条件,得出了井眼的相对贡献和响应中的形成的闭合曲线特征。 对于每个深度,未知的相应值来自相对于闭合曲线的该深度的响应对的图上的位置。 例如,在C /(C + O)产量的曲线上,曲线是平行四边形,两个并列的边形成一个坐标系; 每个响应的坐标分别对应于地层和钻孔的未知值。
    • 9. 发明授权
    • Formation evaluation through azimuthal tool-path identification
    • 通过方位角工具路径识别形成评估
    • US06696684B2
    • 2004-02-24
    • US10034476
    • 2001-12-28
    • Richard J. RadtkeRobert A. AdolphHélène C. ClimentLuca Ortenzi
    • Richard J. RadtkeRobert A. AdolphHélène C. ClimentLuca Ortenzi
    • G01V504
    • G01V5/125
    • A method for tool path identification in formation evaluation includes obtaining measurements of formation properties in azimuthal sectors for each of a plurality of depth levels; calculating quality factors from the measurements; identifying a centroid or maximum of the quality factors among the measurements in each of the azimuthal sectors for each depth level; and associating the centroid or maximum of the quality factors at each depth level along a borehole to form the tool path. Calculating the quality factors may include parameterizing the measurements according to at least one factor selected from a spine factor, a rib factor, and a volumetric photoelectric factor. A method for determining corrected measurements for formation properties includes identifying a tool path from measurements taken in azimuthal sectors at each depth level along a borehole; and calculating a corrected measurement at the each depth level by averaging measurements in the azimuthal sectors adjacent the tool path.
    • 在地层评价中用于工具路径识别的方法包括获得多个深度级中的每一个的方位角扇区中的地层特性的测量; 从测量中计算质量因子; 在每个深度级的每个方位角扇区中测量质量因子的质心或最大值; 并且沿着钻孔将每个深度级的质量因子的质心或最大值相关联以形成工具路径。 计算质量因子可以包括根据从脊柱因子,肋因子和体积光电因子中选择的至少一个因素来参数化测量。 用于确定用于地层性质的校正测量的方法包括从沿着钻孔的每个深度级的方位角段中进行的测量中识别刀具路径; 以及通过对与所述刀具路径相邻的所述方位区域中的测量进行平均,来计算所述每个深度级的校正测量值。
    • 10. 发明授权
    • Thermal neutron porosity from neutron slowing-down length, formation thermal neutron capture cross section, and bulk density
    • 来自中子减速长度的热中子孔隙度,形成热中子捕获截面积和体积密度
    • US07667192B2
    • 2010-02-23
    • US11839608
    • 2007-08-16
    • Scott H. FrickeRobert A. AdolphMike Evans
    • Scott H. FrickeRobert A. AdolphMike Evans
    • G01V5/10
    • G01V5/107
    • A method for determining at least one formation property calculated from neutron measurements acquired with a downhole tool includes emitting neutrons from a source in the tool into the formation, detecting neutrons with at least one detector in the downhole tool, calculating a first slowing-down length (L1) based on the detected neutrons, and deriving a second slowing-down length (L2) based on the first slowing-down length (L1). Further steps include deriving a correlation function for relating slowing-down lengths from a first tool to slowing-down lengths associated with a different source, wherein the correlation function depends on formation properties such as bulk density; and applying the correlation function to the slowing-down length of the first tool to derive the slowing-down length of the second tool. A method for determining a thermal neutron formation porosity based on a slowing-down length from epithermal neutron measurements from an electronic neutron source includes converting the slowing-down length into a computed neutron slowing-down length from thermal neutron measurements from a chemical neutron source, wherein the converting uses a correlation function that depends on formation bulk density; deriving a thermal neutron countrate ratio based on the computed neutron slowing-down length, wherein the deriving uses a function that depends on the formation bulk density and formation sigma; and computing the thermal neutron formation porosity from the thermal neutron countrate ratio.
    • 用于确定由井下工具获取的中子测量计算的至少一个地层特性的方法包括从工具中的源将地层中子发射到地层中,用井下工具中的至少一个检测器检测中子,计算第一减速长度 (L1),并且基于第一减速长度(L1)导出第二减速长度(L2)。 进一步的步骤包括导出相关函数,用于将来自第一工具的减速长度与与不同源相关联的减速长度相关联,其中所述相关函数取决于地层特性,例如体积密度; 以及将所述相关函数应用于所述第一工具的减速长度以导出所述第二工具的减速长度。 基于来自电子中子源的超热中子测量的基于减速长度确定热中子形成孔隙的方法包括将来自化学中子源的热中子测量的减速长度转换成计算的中子减速长度, 其中所述转换使用取决于地层堆积密度的相关函数; 基于计算的中子减速长度导出热中子剂量比,其中导出使用取决于地层堆积密度和形成σ的函数; 并从热中子计数比计算热中子形成孔隙度。