会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • System and method for forward path gain control in a digital predistortion linearized transmitter
    • 数字预失真线性化发射机中的前向路径增益控制系统和方法
    • US07590190B2
    • 2009-09-15
    • US11214191
    • 2005-08-29
    • Christian G. LukeIan JohnsonMark CopeAdrian MansellSteven Andrew Wood
    • Christian G. LukeIan JohnsonMark CopeAdrian MansellSteven Andrew Wood
    • H04K1/02
    • H04L27/3809
    • A system and method for controlling the gain in the forward signal path of a digital predistortion linearizer is disclosed. The loop gain of the predistortion system is driven to unity, where a separately controlled constant-gain observation path allows accurate gain control of the forward path. This is divided into digital gain from the predistortion function and analog gain from a Voltage Variable Attenuator (VVA) in the transmitter. The invention balances the distribution between these two domains in order to maximize dynamic range and minimize noise in the forward signal path. In order to distribute the forward path gain accurately, the characteristic of the VVA must be well known. Since these devices tend to be non-linear, with variable characteristic over temperature and batch, the invention compensates for this non-linear behavior by tracking the varying transfer characteristic of the VVA, giving a predictable local characteristic. Another aspect of the disclosed invention is the ability to operate with very low transmit power and loop gain levels, allowing accurate gain control during such scenarios as cell initialization, that require operation over a wide dynamic range.
    • 公开了一种用于控制数字预失真线性化电路的前向信号路径中的增益的系统和方法。 预失真系统的环路增益被驱动为单位,其中单独控制的恒定增益观测路径允许正向路径的精确增益控制。 这被分为来自预失真功能的数字增益和发射机中的电压可变衰减器(VVA)的模拟增益。 本发明平衡了这两个域之间的分布,以便使动态范围最大化并使正向信号路径中的噪声最小化。 为了准确地分配正向路径增益,VVA的特性必须是众所周知的。 由于这些装置倾向于非线性,具有温度和批次可变特性,本发明通过跟踪VVA的变化传递特性来补偿该非线性行为,从而给出可预测的局部特性。 所公开的发明的另一方面是以非常低的发射功率和环路增益水平进行操作的能力,从而允许在需要在宽动态范围上操作的诸如小区初始化的情况下的精确增益控制。
    • 5. 发明授权
    • Optical examination apparatus
    • 光学检查仪器
    • US5032024A
    • 1991-07-16
    • US345260
    • 1989-05-01
    • Mark Cope
    • Mark Cope
    • A61N5/06A61B5/00A61B5/145A61B5/1455A61B5/1495A61B10/00G01J1/10G01J3/02G01N21/25G01N21/53
    • G01J3/02A61B5/14553G01J3/0218G01N21/255G01N21/532G01J1/10
    • An optical examination apparatus for optically examining density, distribution, etc. of oxygen in an object to be examined such as organic tissue like brain tissue, of man or animal compressing a light source, an optical fibre bundle having one end on which light emitted from the light source is incident and which is divided at the other end into a first and second branch with a predetermined ratio of division, transmitted and scattered light detection means for detecting light is emitted from the first branch of the fibre bundle and transmitted through and scattered by the object to be examined, monitoring light detection means for detecting monitoring light emitted from the second branch fibre bundle, normalization means for normalizing an output of the transmitted and scattered light detected means on the basis of an output from the monitoring light detection means, representative sampling means for ensuring that the light output from the second branch fibre bundle is representative of that output by the light source. The representative sampling means may be provided by distributing the optical fibres forming the second branch fibre bundle uniformly over the one end of the optical fibre bundle or may comprise a mode scrambler interposed between the one end of the optical fibre bundle and the light source to distribute light from the light source over the whole fibre bundle.
    • 一种光学检查装置,用于光学检查待检测物体中的氧的密度,分布等,如有机组织如脑组织,压缩光源的人或动物,具有一端的光纤束, 光源是入射的,并且在另一端被划分为具有预定比例的分割的第一和第二分支,用于检测光的透射和散射光检测装置从光纤束的第一分支发射并透射和散射 通过检查对象,检测从第二分支光纤束发出的监视光的监视光检测装置,用于根据监视光检测装置的输出对发射和散射光检测装置的输出进行归一化的归一化装置, 用于确保来自第二分支光纤束的光输出具有代表性的代表性采样装置 的光输出。 可以通过将形成第二分支光纤束的光纤均匀地分布在光纤束的一端上来提供代表性采样装置,或者可以包括插入在光纤束的一端和光源之间的模式扰频器,以分布 来自光源的整个纤维束的光。
    • 8. 发明授权
    • Method and apparatus for determining analytical data concerning the
inside of a scattering matrix
    • 用于确定散射矩阵内部的分析数据的方法和装置
    • US5825488A
    • 1998-10-20
    • US745204
    • 1996-11-08
    • Matthias KohlMark CopeMatthias EssenpreisDirk Boecker
    • Matthias KohlMark CopeMatthias EssenpreisDirk Boecker
    • G01N33/483A61B5/145A61B5/1455G01N21/17G01N21/49G01N33/543G01N21/47
    • G01N21/49
    • A method and an apparatus for determining analytical data concerning the inside of a scattering matrix, in particular of a biological sample. In a detection step detection measurements are carried out in which light is irradiated into the matrix as primary light at an irradiation site (12) through an interface bounding the scattering matrix (6) and light emerging out of the scattering matrix through the interface is detected as secondary light at a detection site (13) at a predetermined measuring distance from the irradiation site, in order to determine as a measurement variable a measurable physical property of the light which varies due to the interaction of the light with the scattering matrix, which measurement variable is a measure of the analytical data to be determined. In an evaluation step the analytical data are determined on the basis of the measurement variable measured in the detection step. In order that such a matrix analysis may be carried out with relatively simple measuring means, at least two detection measurements are carried out in the detection step with different reflection conditions at the interface (5) between the irradiation site (12) and the detection site (13), in each of which the measurement value of the measurement variable is determined.
    • 一种用于确定关于散射矩阵,特别是生物样品的内部的分析数据的方法和装置。 在检测步骤中,进行检测测量,其中在辐射位置(12)处通过界定散射矩阵(6)的界面将光照射到基质中作为初级光,并且检测出通过界面从散射矩阵出射的光 作为在距离照射部位预定测量距离处的检测部位(13)处的二次光,以便将由于光与散射矩阵的相互作用而变化的光的可测量的物理性质确定为测量变量,其中 测量变量是要确定的分析数据的度量。 在评估步骤中,基于在检测步骤中测量的测量变量来确定分析数据。 为了可以用相对简单的测量装置进行这种矩阵分析,在具有不同反射条件的检测步骤中,在照射部位(12)和检测部位(5)之间的界面(5)处进行至少两次检测测量 (13),其中每个测量变量的测量值被确定。