会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明授权
    • Dynamic threshold MOSFET using accumulated base BJT level shifter for
low voltage sub-quarter micron transistor
    • 动态阈值MOSFET使用累积的基极BJT电平转换器用于低电压亚四分之一微米晶体管
    • US6124618A
    • 2000-09-26
    • US379281
    • 1999-08-23
    • Shyh-Chyi WongMong-Song Liang
    • Shyh-Chyi WongMong-Song Liang
    • H01L27/06H01L27/12H01L29/72
    • H01L27/0635H01L27/1203
    • A dynamic threshold voltage MOSFET to provide increase drain-to-source saturation current (I.sub.DSsat) and lower off current (I.sub.off) is described. The dynamic threshold voltage MOSFET has a first diffusion-well of a material of a first conductivity type formed at the surface of the substrate to form a bulk region. A source region and a drain region of a material of a second conductivity type are diffused into the diffusion-well. A first gate is then placed on a first oxide surface above the substrate between the source and drain regions. An accumulated base bipolar transistor is then placed on the semiconductor substrate. The base of the accumulated base bipolar transistor is connected to the gate, the emitter is connected to the diffusion-well. A resistor is connected between the emitter of the accumulated base bipolar transistor and a substrate biasing voltage source. A biasing circuit connected to the collector of the accumulated base bipolar transistor to provide a bias voltage for the accumulated base bipolar transistor.
    • 描述了提供增加漏极 - 源极饱和电流(IDSsat)和降低截止电流(Ioff)的动态阈值电压MOSFET。 动态阈值电压MOSFET具有在衬底的表面形成的第一导电类型的材料的第一扩散阱,以形成体积区域。 第二导电类型的材料的源极区域和漏极区域扩散到扩散井中。 然后将第一栅极放置在源极和漏极区域之间的衬底上方的第一氧化物表面上。 然后将积累的基极双极晶体管放置在半导体衬底上。 累积的基极双极晶体管的基极连接到栅极,发射极连接到扩散井。 一个电阻连接在累积的基极双极晶体管的发射极和一个衬底偏置电压源之间。 连接到累积的基极双极晶体管的集电极的偏置电路,为累积的基极双极晶体管提供偏置电压。
    • 8. 发明授权
    • Cascode MOS current mirror with lateral bipolar junction transistor to
enhance ouput signal swing
    • 串联MOS电流镜与横向双极结晶体管增强输出信号摆幅
    • US5644269A
    • 1997-07-01
    • US570297
    • 1995-12-11
    • Shyh-Chyi WongMong-Song Liang
    • Shyh-Chyi WongMong-Song Liang
    • H03F1/22H03F3/345H03F3/45H03F3/16
    • H03F1/223H03F3/345
    • A MOS transistor current mirror having a low output voltage is described. A first and second MOST's have their drains and gates connected respectively to form MOS diodes. The drain of the first MOST is connected to a control constant current source and the source of first MOST is connected to the drain of the second MOST. The drain and gate of the first MOST are connected to the base of a bipolar junction transistor (BJT). The collector of the BJT is connected to a first power supply line and the emitter is connected to the gate of a third MOST. A resistor is connected between the emitter of the BJT and the a second power supply line. The gate and drain of the second MOST is connected to the gate of a fourth MOST. The sources of the second and fourth MOST's are connected to the second power supply line. The drain of the fourth MOST is connected to the source of the third MOST. The drain of the third MOST is connected to external circuitry. The voltage developed between the drain of the third MOST and the second power supply line is relatively small to allow the voltage developed by the external circuitry to be relatively large, while said current mirror is providing a constant current to said external circuitry.
    • 描述具有低输出电压的MOS晶体管电流镜。 第一和第二MOST的漏极和门分别连接形成MOS二极管。 第一MOST的漏极连接到控制恒流源,第一MOST的源极连接到第二MOST的漏极。 第一MOST的漏极和栅极连接到双极结型晶体管(BJT)的基极。 BJT的集电极连接到第一电源线,发射极连接到第三MOST的栅极。 电阻器连接在BJT的发射极和第二电源线之间。 第二MOST的栅极和漏极连接到第四MOST的栅极。 第二和第四MOST的源极连接到第二电源线。 第四MOST的漏极连接到第三MOST的源极。 第三MOST的漏极连接到外部电路。 在第三MOST的漏极和第二电源线之间产生的电压相对较小,以允许由外部电路产生的电压相对较大,而所述电流镜向所述外部电路提供恒定的电流。
    • 9. 发明授权
    • Method of making a stack-polysilicon capacitor-coupled dual power supply input/output protection circuit
    • 制造堆叠多晶硅电容耦合双电源输入/输出保护电路的方法
    • US06181542B2
    • 2001-01-30
    • US09216824
    • 1998-12-21
    • Mong-Song LiangShyh-Chyi Wong
    • Mong-Song LiangShyh-Chyi Wong
    • H02H300
    • H03K19/00315H01L27/0251H01L27/0266
    • An interface buffer circuit connected at an interface of circuits having a high voltage power supply and circuits having a low voltage power supply, prevents damage due to application of the high voltage power supply to the output terminal of the interface buffer circuit. The interface buffer circuit has a predriver circuit and an interface buffer circuit. The interface buffer circuit has an interface buffer protection circuit. The interface buffer protection circuit consists of an inverter circuit. The inverter circuit has an input connected to the input of the interface driver circuit and an output connected to the gate of a MOS transistor. The source of the MOS transistor is connected to the predriver circuit to control the output of the predriver circuit. The interface buffer protection circuit further has a coupling capacitor connected to interface driver circuit. When a voltage level at the output of the interface driver circuit approaches that of the high voltage power supply, a voltage level input of the inverter causes the output of the inverter circuit to assume a voltage level that will turn off the MOS transistor capturing the voltage level at the input of the interface driver circuit to prevent damage.
    • 连接在具有高电压电源的电路和具有低电压电源的电路的接口处的接口缓冲电路防止由于向接口缓冲电路的输出端施加高电压电源而造成的损坏。 接口缓冲电路具有预驱动电路和接口缓冲电路。 接口缓冲电路具有接口缓冲保护电路。 接口缓冲保护电路由逆变电路组成。 逆变器电路具有连接到接口驱动电路的输入的输入端和与MOS晶体管的栅极连接的输出。 MOS晶体管的源极连接到预驱动电路以控制预驱动电路的输出。 接口缓冲保护电路还具有连接到接口驱动电路的耦合电容。 当接口驱动电路的输出端的电压电平接近高电压电源的电压时,反相器的电压电平输入使逆变器电路的输出呈现一个电压电平,该电压将关闭MOS晶体管,捕获电压 电平在接口驱动电路的输入端以防止损坏。
    • 10. 发明授权
    • Drain and source engineering for ESD-protection transistors
    • ESD保护晶体管的漏极和源极工程
    • US6051458A
    • 2000-04-18
    • US72254
    • 1998-05-04
    • Mong-Song LiangShyh-Chyi Wong
    • Mong-Song LiangShyh-Chyi Wong
    • H01L21/8238H01L27/092
    • H01L27/0922H01L21/823814Y10S438/919
    • A semiconductor device is formed on a semiconductor substrate with an N-well and a P-well with source/drain sites in the N-well and in the P-well by the following steps. Form a gate oxide layer and a gate electrode layer patterned into a gate electrode stack with sidewalls over a substrate with N-well and P-well. Form N- LDS/LDD regions in the P-well. Form N- LDS/LDD regions in the P-well and P- lightly doped halo regions in the P-well below the source site and the drain site in the P-well. Form a counter doped halo region doped with N type dopant below the source region site in the P-well. Form spacers on the gate electrode sidewalls. Then, form lightly doped regions self-aligned with the gate electrode in the source/drain sites. Form N+ type doped source/drain regions deeper than the N- LDS/LDD regions in the P-well in the source/drain sites. Form P+ type doped source/drain regions deeper than the P- LDS/LDD regions in the N-well in the source/drain sites.
    • 半导体器件通过以下步骤在N阱和P阱中的N阱和P阱形成在半导体衬底上,源极/漏极位置在N阱中。 形成栅极氧化物层和栅极电极层,其图案化成具有N阱和P阱的衬底上的侧壁的栅电极堆叠。 在P井中形成N- LDS / LDD区域。 在P阱下面的P阱中的P-阱和P-轻掺杂的晕区中的N-LDS / LDD区域形成在P阱中的漏极位置。 在P阱的源极区域的下方形成掺杂有N型掺杂剂的反掺杂晕圈。 在栅电极侧壁上形成间隔物。 然后,形成与源/漏部位中的栅电极自对准的轻掺杂区域。 形式N +型掺杂的源极/漏极区域比源极/漏极区域的P阱中的N-LDS / LDD区域更深。 形成P +型掺杂的源极/漏极区,比源极/漏极位置的N阱中的P- LDS / LDD区更深。