会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Trekking Atom Nanotube Growth
    • 徒步原子纳米管增长
    • US20140120029A1
    • 2014-05-01
    • US14037034
    • 2013-09-25
    • Bryan Edward Laubscher
    • Bryan Edward Laubscher
    • C01B31/02
    • C01B31/0226B82Y30/00B82Y40/00C01B32/16
    • Disclosed is a trekking atom nanotube growth technology capable of continuously growing long, high quality nanotubes. This patent application is a Continuation In Part of the Proximate Atom Nanotube Growth patent application Ser. No. 13/694,088 filed on Oct. 29, 2012. The current invention represents a departure from chemical vapor deposition technology as the atomic feedstock does not originate in the gaseous environment surrounding the nanotubes. The technology mitigates the problems that cease carbon nanotube growth in chemical vapor deposition growth techniques: 1) The accumulation of material on the surface of the catalyst particles, suspected to be primarily amorphous carbon, 2) The effect of Ostwald ripening that reduces the size of smaller catalyst particles and enlarges larger catalyst particles, 3) The effect of some catalyst materials diffusing into the substrate used to grow carbon nanotubes and ceasing growth when the catalyst particle becomes too small.
    • 公开了能够连续生长长质量高质量纳米管的徒步原子纳米管生长技术。 该专利申请是近似原子纳米管生长专利申请的部分继续申请。 2012年10月29日提交的第13 / 694,088号。本发明代表了化学气相沉积技术的偏离,因为原子原料不是源于纳米管周围的气态环境。 该技术减轻了在化学气相沉积生长技术中停止碳纳米管生长的问题:1)材料在催化剂颗粒表面上的积累,怀疑是主要是无定形碳,2)Ostwald熟化的作用减小了 较小的催化剂颗粒,并且扩大了较大的催化剂颗粒,3)一些催化剂材料扩散到用于生长碳纳米管的基材中的作用,并且当催化剂颗粒变得太小时停止生长。
    • 2. 发明申请
    • Proximate atom nanotube growth
    • 近似原子纳米管生长
    • US20140120028A1
    • 2014-05-01
    • US13694088
    • 2012-10-29
    • Bryan Edward Laubscher
    • Bryan Edward Laubscher
    • B01J19/00C01B31/02
    • C01B32/16B01J19/087B01J19/121B01J2219/0892B82Y40/00
    • Disclosed is a proximate atom nanotube growth technology capable of continuously growing long, high quality nanotubes. The current invention represents a departure from chemical vapor deposition technology as the atomic feedstock does not originate in the gaseous environment surrounding the nanotubes. The technology mitigates the problems that cease carbon nanotube growth in chemical vapor deposition growth techniques: 1) The accumulation of material on the surface of the catalyst particles, suspected to be primarily amorphous carbon. 2) The effect of Ostwald ripening that reduces the size of smaller catalyst particles and enlarges larger catalyst particles evolving the catalyst particles to a size range distribution incapable of supporting carbon nanotube growth. 3) The effect of some catalyst materials diffusing into the substrate used to grow carbon nanotubes and ceasing growth when the catalyst particle becomes too small.
    • 公开了能够连续生长长质量高的纳米管的邻近的原子纳米管生长技术。 本发明代表了化学气相沉积技术的偏离,因为原子原料不是源于围绕纳米管的气态环境。 该技术减轻了在化学气相沉积生长技术中停止碳纳米管生长的问题:1)材料在催化剂颗粒表面上的积累,怀疑是主要是无定形碳。 2)Ostwald熟化的作用减小了较小的催化剂颗粒的尺寸,并且扩大了催化剂颗粒将催化剂颗粒放大到不能支撑碳纳米管生长的尺寸范围分布。 3)当催化剂颗粒变得太小时,一些催化剂材料扩散到用于生长碳纳米管的基材中并停止生长的效果。
    • 4. 发明授权
    • Trekking atom nanotube growth
    • 徒步原子纳米管生长
    • US09371232B2
    • 2016-06-21
    • US14037034
    • 2013-09-25
    • Bryan Edward Laubscher
    • Bryan Edward Laubscher
    • C01B31/02B82Y30/00B82Y40/00
    • C01B31/0226B82Y30/00B82Y40/00C01B32/16
    • Disclosed is a trekking atom nanotube growth technology capable of continuously growing long, high quality nanotubes. This patent application is a Continuation In Part of the Proximate Atom Nanotube Growth patent application Ser. No. 13/694,088 filed on Oct. 29, 2012. The current invention represents a departure from chemical vapor deposition technology as the atomic feedstock does not originate in the gaseous environment surrounding the nanotubes. The technology mitigates the problems that cease carbon nanotube growth in chemical vapor deposition growth techniques: 1) The accumulation of material on the surface of the catalyst particles, suspected to be primarily amorphous carbon, 2) The effect of Ostwald ripening that reduces the size of smaller catalyst particles and enlarges larger catalyst particles, 3) The effect of some catalyst materials diffusing into the substrate used to grow carbon nanotubes and ceasing growth when the catalyst particle becomes too small.
    • 公开了能够连续生长长质量高质量纳米管的徒步原子纳米管生长技术。 该专利申请是“近似原子纳米管生长”专利申请的一部分。 2012年10月29日提交的第13 / 694,088号。本发明代表了化学气相沉积技术的偏离,因为原子原料不是源于纳米管周围的气态环境。 该技术减轻了在化学气相沉积生长技术中停止碳纳米管生长的问题:1)材料在催化剂颗粒表面上的积累,怀疑是主要是无定形碳,2)Ostwald熟化的作用减小了 较小的催化剂颗粒,并且扩大了较大的催化剂颗粒,3)一些催化剂材料扩散到用于生长碳纳米管的基材中的作用,并且当催化剂颗粒变得太小时停止生长。
    • 5. 发明授权
    • Natural light interferometer
    • 自然光干涉仪
    • US09239224B2
    • 2016-01-19
    • US13815387
    • 2013-02-26
    • Bryan Edward Laubscher
    • Bryan Edward Laubscher
    • G01B9/02
    • G01B9/02044
    • Disclosed is a Natural Light Interferometer. The interferometer measures the amplitude and phase distribution of a coherent or incoherent electromagnetic signal, including natural light. In principle, the amplitude and phase distribution of any signal of any wavelength, incoherent or coherent, may be measured using this technique. The corresponding image may be reconstructed as well. The interferometer exploits Fourier transform heterodyne techniques but extends this technology to incoherent signals. The interferometer generates the analyzing signal by exploiting nanotechnology-based signal generation stimulated by the original signal. The Natural Light Interferometer applications include surveillance and reconnaissance; metrology; space-based free-flying, tethered or rigid interferometer arrays; and ground-based sparse interferometer arrays. There is also disclosed a homodyne embodiment of the Natural Light Interferometer that exploits quadrature phase techniques.
    • 公开了一种自然光干涉仪。 干涉仪测量相干或非相干电磁信号的幅度和相位分布,包括自然光。 原则上,可以使用这种技术测量任何波长,非相干或相干的任何信号的幅度和相位分布。 也可以重构对应的图像。 干涉仪利用傅里叶变换外差技术,但将该技术扩展到非相干信号。 干涉仪通过利用原始信号刺激的基于纳米技术的信号产生生成分析信号。 自然光干涉仪应用包括监视和侦察; 计量学 基于空间的自由飞行,系绳或刚性干涉仪阵列; 和地面稀疏干涉仪阵列。 还公开了利用正交相位技术的自然光干涉仪的零星实施例。
    • 6. 发明申请
    • Natural light interferometer
    • 自然光干涉仪
    • US20140240715A1
    • 2014-08-28
    • US13815387
    • 2013-02-26
    • Bryan Edward Laubscher
    • Bryan Edward Laubscher
    • G01J9/02
    • G01B9/02044
    • Disclosed is a Natural Light Interferometer. The interferometer measures the amplitude and phase distribution of a coherent or incoherent electromagnetic signal, including natural light. In principle, the amplitude and phase distribution of any signal of any wavelength, incoherent or coherent, may be measured using this technique. The corresponding image may be reconstructed as well. The interferometer exploits Fourier transform heterodyne techniques but extends this technology to incoherent signals. The interferometer generates the analyzing signal by exploiting nanotechnology-based signal generation stimulated by the original signal. The Natural Light Interferometer applications include surveillance and reconnaissance; metrology; space-based free-flying, tethered or rigid interferometer arrays; and ground-based sparse interferometer arrays. There is also disclosed a homodyne embodiment of the Natural Light Interferometer that exploits quadrature phase techniques.
    • 公开了一种自然光干涉仪。 干涉仪测量相干或非相干电磁信号的幅度和相位分布,包括自然光。 原则上,可以使用这种技术测量任何波长,非相干或相干的任何信号的幅度和相位分布。 也可以重构对应的图像。 干涉仪利用傅里叶变换外差技术,但将该技术扩展到非相干信号。 干涉仪通过利用原始信号刺激的基于纳米技术的信号产生生成分析信号。 自然光干涉仪应用包括监视和侦察; 计量学 基于空间的自由飞行,系绳或刚性干涉仪阵列; 和地面稀疏干涉仪阵列。 还公开了利用正交相位技术的自然光干涉仪的零星实施例。
    • 7. 发明申请
    • Nanotube Detangler
    • 纳米管分离器
    • US20130306490A1
    • 2013-11-21
    • US13506754
    • 2012-05-15
    • Bryan Edward Laubscher
    • Bryan Edward Laubscher
    • B03C7/00B01J19/12B01J19/08B01J19/10B82Y35/00B82Y40/00
    • D01F9/12B82Y15/00B82Y40/00
    • Disclosed is a Nanotube Detangler capable of aligning and ordering the constituent nanotubes, nanowires and/or nanoparticles of a filament leading to greater tensile strength of the filament and subsequent threads or structures made from it. The technique exploits ion infusion as a mechanism to force the tangle of the nanotubes, nanowires and/or nanoparticles apart. Included in the invention are alignment enhancement technologies such as heating, vibration, electromagnetic, particle bombardment and chemical means. The present invention recognizes that aligned and ordered nanotubes, nanowires and nanoparticles in a filament will increase the conductivity of the filament and enable the fabrication of electric conductors, wires and circuit components. Such breakthroughs in strength and conductivity of filaments of nanotubes, nanowires and/or nanoparticles will revolutionize life on Earth.
    • 公开了能够对齐和排列长丝的组成纳米管,纳米线和/或纳米颗粒的纳米管解码器,导致细丝的拉伸强度和由其制成的随后的丝线或结构。 该技术利用离子注入作为强制纳米管,纳米线和/或纳米颗粒缠结的机制。 本发明包括对准增强技术,如加热,振动,电磁,粒子轰击和化学手段。 本发明认识到,长丝中的对准和有序的纳米管,纳米线和纳米颗粒将增加灯丝的导电性并且能够制造电导体,导线和电路部件。 纳米管,纳米线和/或纳米粒子的长丝的强度和导电性的这种突破将彻底改变地球上的生命。