会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 10. 发明申请
    • SURGICAL LASER SYSTEMS AND LASER LITHOTRIPSY TECHNIQUES
    • US20220079674A1
    • 2022-03-17
    • US17533653
    • 2021-11-23
    • Boston Scientific Scimed, Inc.
    • Wen-Jui Ray CHIARongwei Jason XUANThomas C. HASENBERGJian James ZHANGSteven Yihlih PENGDanop RAJABHANDHARAKS
    • A61B18/26A61B5/00A61B1/307A61B5/20A61B1/00
    • A surgical laser system (100) includes a first laser source (140A), a second laser source (140B), a beam combiner (142) and a laser probe (108). The first laser source is configured to output a first laser pulse train (144, 104A) comprising first laser pulses (146). The second laser source is configured to output a second laser pulse train (148, 104B) comprising second laser pulses (150). The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train (152, 104) comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.
      In some embodiments, a surgical laser system includes a laser generator (102), a laser probe (108), a stone analyzer (170), and a controller (122). The laser generator is configured to generate laser energy (104) based on laser energy settings (126). The laser probe is configured to discharge the laser energy. The stone analyzer has an output relating to a characteristic of a targeted stone (120). The controller comprises at least one processor configured to determine the laser energy settings based on the output.
      In some embodiments of a method of fragmenting a targeted kidney or bladder stone, a first laser pulse train (144) comprising first laser pulses (146) is generated using a first laser source (140A). A second laser pulse train (148) comprising second laser pulses (150) is generated using a second laser source (140B). The first and second laser pulse trains are combined into a combined laser pulse train (152) comprising the first and second laser pulses. The stone is exposed to the combined laser pulse train using a laser probe (108). The stone is fragmented in response to exposing the stone to the combined laser pulse train.
      In some embodiments of a method of fragmenting a targeted kidney or bladder stone, an output relating to a characteristic of the targeted stone (120) is generated using a stone analyzer (170). Embodiments of the characteristic include an estimated size of the stone, an estimated length of the stone, an estimated composition of the stone, and a vibration frequency measurement of the stone. Laser energy settings (126) are generated based on the output. Laser energy (104) is generated using a laser generator in accordance with the laser energy settings. The stone is exposed to the laser energy using a laser probe (108). The stone is fragmented in response to exposing the stone to the laser energy.
      In some embodiments of a method of fragmenting a targeted kidney or bladder stone (120), the stone is exposed to first laser energy (130) having a first power level using a laser probe (108). The stone is exposed to second laser energy (164) having a second power level using the laser probe, wherein the second power level is higher than the first power level. The stone is fragmented in response to exposing the stone to the second laser energy.