会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • TURBINE VANES WITH AIRFOIL-PROXIMATE COOLING SEAM
    • 涡轮风扇与空气 - 接近冷却海绵
    • US20090053037A1
    • 2009-02-26
    • US11494178
    • 2006-07-27
    • Bonnie D. MariniAnthony L. Schiavo
    • Bonnie D. MariniAnthony L. Schiavo
    • F01D1/18
    • F01D5/147F01D5/081F01D9/041F01D11/005F05D2240/81
    • Aspects of the invention relate to a turbine vane in which the inner and outer platforms are located substantially entirely on either the pressure side or the suction side of the airfoil. When a plurality of such vanes are installed in the turbine, a seam is formed by the circumferential end of the inner and outer platforms and a portion of the airfoil of a neighboring vane. During engine operation, a high pressure coolant is supplied to at least one of the platforms. The coolant can leak through the seam. Because the seam is located proximate the airfoil, the coolant leakage through the seam can be productively used to cool the transition region between the vane platforms and the airfoil. In addition to such cooling benefits, aspects of the invention can result in a potential increase in engine efficiency as well as component life.
    • 本发明的方面涉及一种涡轮叶片,其中内平台和外平台基本上完全位于翼型的压力侧或吸力侧上。 当多个这样的叶片安装在涡轮机中时,由内平台和外平台的周向端部和相邻叶片的翼型的一部分形成接缝。 在发动机操作期间,向至少一个平台供应高压冷却剂。 冷却液可能通过接缝泄漏。 因为接缝位于翼型附近,所以通过接缝的冷却剂泄漏可以有效地用于冷却叶片平台和翼型之间的过渡区域。 除了这样的冷却效果之外,本发明的方面可以导致发动机效率以及部件寿命的潜在增加。
    • 5. 发明授权
    • Turbine vanes with airfoil-proximate cooling seam
    • 涡轮叶片与翼面靠近的冷却缝
    • US07581924B2
    • 2009-09-01
    • US11494178
    • 2006-07-27
    • Bonnie D. MariniAnthony L. Schiavo
    • Bonnie D. MariniAnthony L. Schiavo
    • F01D9/02
    • F01D5/147F01D5/081F01D9/041F01D11/005F05D2240/81
    • Aspects of the invention relate to a turbine vane in which the inner and outer platforms are located substantially entirely on either the pressure side or the suction side of the airfoil. When a plurality of such vanes are installed in the turbine, a seam is formed by the circumferential end of the inner and outer platforms and a portion of the airfoil of a neighboring vane. During engine operation, a high pressure coolant is supplied to at least one of the platforms. The coolant can leak through the seam. Because the seam is located proximate the airfoil, the coolant leakage through the seam can be productively used to cool the transition region between the vane platforms and the airfoil. In addition to such cooling benefits, aspects of the invention can result in a potential increase in engine efficiency as well as component life.
    • 本发明的方面涉及一种涡轮叶片,其中内平台和外平台基本上完全位于翼型的压力侧或吸力侧上。 当多个这样的叶片安装在涡轮机中时,由内平台和外平台的周向端部和相邻叶片的翼型的一部分形成接缝。 在发动机操作期间,向至少一个平台供应高压冷却剂。 冷却液可能通过接缝泄漏。 因为接缝位于翼型附近,所以通过接缝的冷却剂泄漏可以有效地用于冷却叶片平台和翼型之间的过渡区域。 除了这样的冷却效果之外,本发明的方面可以导致发动机效率以及部件寿命的潜在增加。
    • 6. 发明授权
    • CMC to metal attachment mechanism
    • CMC到金属附件机构
    • US07722317B2
    • 2010-05-25
    • US11698232
    • 2007-01-25
    • Anthony L. SchiavoDouglas A. KellerMalberto F. GonzalezDavid C. Radonovich
    • Anthony L. SchiavoDouglas A. KellerMalberto F. GonzalezDavid C. Radonovich
    • F01D25/26
    • F01D25/246F05D2300/21F05D2300/603Y10T29/49321
    • A CMC wall (20F) may be attached to a metal wall (22F) by a plurality of bolts (28A, 28B, 28C) passing through respective holes (24A, 24B, 24C) in the CMC wall (20F) and holes in the metal wall (22F), clamping the walls (20F, 22F) together with a force that allows sliding thermal expansion but does not allow vibrational shifting. Distal ones of the holes (24A, 24B) in the CMC wall (20F) or in the metal wall (22F) are elongated toward a central one of the bolts (24C) or at alternate angles to guide differential thermal expansion (20T) of the CMC wall (20F) versus the metal wall (22F) between desired cold and hot geometries. A second CMC wall (20R) may be mounted similarly to a second metal wall (22R) by pins (39A, 39B, 39C) that allow expansion of the CMC component (201) in a direction normal to the walls (20F, 20R).
    • 通过穿过CMC壁(20F)中的相应孔(24A,24B,24C)的多个螺栓(28A,28B,28​​C)将CMC壁(20F)连接到金属壁(22F)上, 金属壁(22F),通过允许滑动热膨胀但不允许振动移动的力将壁(20F,22F)夹紧在一起。 在CMC壁(20F)或金属壁(22F)中的孔中的远端(24A,24B)朝向螺栓(24C)的中心一个或相互交替的角度拉长,以引导差动热膨胀(20T) CMC壁(20F)与期望的冷和热几何之间的金属壁(22F)相对。 第二CMC壁(20R)可以通过销(39A,39B,39C)与第二金属壁(22R)类似地安装,该销(39A,39B,39C)允许CMC部件(201)沿垂直于壁(20F,20R)的方向膨胀, 。
    • 8. 发明申请
    • Wavy CMC Wall Hybrid Ceramic Apparatus
    • 波纹CMC墙混合陶瓷设备
    • US20090071160A1
    • 2009-03-19
    • US11855623
    • 2007-09-14
    • Douglas A. KellerAnthony L. SchiavoJay A. Morrison
    • Douglas A. KellerAnthony L. SchiavoJay A. Morrison
    • F01D25/24F02C7/24
    • F01D9/023F23R3/007Y10T428/1317
    • A ceramic hybrid structure (207, 502, 602, 608) that includes a wavy ceramic matrix composite (CMC) wall (214, 532, 603, 609) bonded with a ceramic insulating layer (230, 538, 604, 610) having a distal surface (242) that may define a hot gas passage (250, 550, 650) or otherwise be in proximity to a source of elevated temperature. In various embodiments, the waves (216, 537, 637) of the CMC wall (214, 532, 603, 609) may conform to the following parameters: a thickness (222) between 1 and 10 millimeters; an amplitude (224) between one and 2.5 times the thickness; and a period (226) between one and 20 times the amplitude. The uninsulated backside surface (218) of the CMC wall (214) provides a desired stiffness and strength and enhanced cooling surface area. In various embodiments the amplitude (224), excluding the thickness (222), may be at least 2 mm.
    • 一种陶瓷混合结构(207,502,602,608),其包括与陶瓷绝缘层(230,538,604,610)接合的波纹陶瓷基复合材料(CMC)壁(214,532,603,609),其具有 远端表面(242),其可以限定热气体通道(250,550,650)或以其它方式接近升高的温度源。 在各种实施例中,CMC壁(214,532,603,609)的波浪(216,537,637)可以符合以下参数:1和10毫米之间的厚度(222); 幅度(224)为厚度的1至2.5倍; 以及振幅的1到20倍之间的周期(226)。 CMC壁(214)的未绝缘的背侧表面(218)提供期望的刚度和强度以及增强的冷却表面积。 在各种实施例中,不包括厚度(222)的振幅(224)可以至少为2mm。
    • 9. 发明授权
    • Circumferential shroud inserts for a gas turbine vane platform
    • 用于燃气轮机叶片平台的环形护罩插件
    • US08096758B2
    • 2012-01-17
    • US12203397
    • 2008-09-03
    • Anthony L. Schiavo
    • Anthony L. Schiavo
    • F01D1/02F01D9/00F03B1/04F03B3/16F03D1/04F03D11/00F03D3/04F04D29/44F04D29/54
    • F01D5/147F01D9/04F05D2240/11F05D2240/81F05D2300/21F05D2300/5024F05D2300/603
    • Protective insert plates (54, 56) installed on a working gas face (42) of a turbine vane platform (26) provide replaceable portions of a turbine shroud for improved maintenance. The plates act as tiles, and may be formed of ceramic materials for thermal protection. Two cages (58, 60) in the vane platform slidably receive the two insert plates (54, 56) from opposite circumferential sides (36, 38) of the platform. The plates slide into the cages up to the pressure and suction sides (32, 34) of the vane airfoil (22). The plates may have proximal edges (62, 64) shaped to fit the respective pressure and suction sides of the vane airfoil. A retainer plate 66 may be attached to a flange (72) on the cooled face (48) of each platform, and may contact each insert plate with a locking device (74, 76) to prevent sliding of the plate in the cage.
    • 安装在涡轮叶片平台(26)的工作气体表面(42)上的保护性插入板(54,56)提供涡轮机罩的可更换部分以改善维护。 板用作瓷砖,并且可以由用于热保护的陶瓷材料形成。 叶片平台中的两个笼子(58,60)可从平台的相对的周向侧面(36,38)滑动地容纳两个插入板(54,56)。 板滑入笼子直到叶片翼型件(22)的压力和吸力侧(32,34)。 板可以具有成形为适合叶片翼型的相应的压力侧和吸力侧的近侧边缘(62,64)。 保持板66可以附接到每个平台的冷却面(48)上的凸缘(72)上,并且可以用锁定装置(74,76)接触每个插入板,以防止板在壳体中的滑动。
    • 10. 发明授权
    • CMC vane assembly apparatus and method
    • CMC叶片装配装置及方法
    • US08292580B2
    • 2012-10-23
    • US12479047
    • 2009-06-05
    • Anthony L. SchiavoMalberto F. GonzalezKuangwei HuangDavid C. Radonovich
    • Anthony L. SchiavoMalberto F. GonzalezKuangwei HuangDavid C. Radonovich
    • F01D5/08F01D5/18
    • F01D9/041F01D5/189F01D5/282F01D5/284F05D2300/21F05D2300/603Y10T29/49323
    • A metal vane core or strut (64) is formed integrally with an outer backing plate (40). An inner backing plate (38) is formed separately. A spring (74) with holes (75) is installed in a peripheral spring chamber (76) on the strut. Inner and outer CMC shroud covers (46, 48) are formed, cured, then attached to facing surfaces of the inner and outer backing plates (38, 40). A CMC vane airfoil (22) is formed, cured, and slid over the strut (64). The spring (74) urges continuous contact between the strut (64) and airfoil (66), eliminating vibrations while allowing differential expansion. The inner end (88) of the strut is fastened to the inner backing plate (38). A cooling channel (68) in the strut is connected by holes (69) along the leading edge of the strut to peripheral cooling paths (70, 71) around the strut. Coolant flows through and around the strut, including through the spring holes.
    • 金属叶片芯或支柱(64)与外背板(40)整体形成。 内侧背板(38)分别形成。 具有孔(75)的弹簧(74)安装在支柱上的周边弹簧室(76)中。 内部和外部CMC护罩罩(46,48)形成,固化,然后连接到内侧和外侧背板(38,40)的相对表面。 形成CMC叶片翼型件(22),固化并滑过支柱(64)。 弹簧(74)促使支柱(64)和翼型件(66)之间的连续接触,消除振动,同时允许不同的膨胀。 支柱的内端(88)固定在内背板(38)上。 支柱中的冷却通道(68)通过沿着支柱的前缘的孔(69)连接到围绕支柱的周边冷却路径(70,71)。 冷却液通过支柱和其周围流动,包括通过弹簧孔。