会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Training a model of a non-linear process
    • 训练非线性过程的模型
    • US08019701B2
    • 2011-09-13
    • US12112750
    • 2008-04-30
    • Bijan Sayyar-RodsariEdward PlumerEric HartmanKadir LianoCelso Axelrud
    • Bijan Sayyar-RodsariEdward PlumerEric HartmanKadir LianoCelso Axelrud
    • G06N5/00
    • G05B13/048G05B13/042G05B17/02
    • System and method for modeling a nonlinear process. A combined model for predictive optimization or control of a nonlinear process includes a nonlinear approximator, coupled to a parameterized dynamic or static model, operable to model the nonlinear process. The nonlinear approximator receives process inputs, and generates parameters for the parameterized dynamic model. The parameterized dynamic model receives the parameters and process inputs, and generates predicted process outputs based on the parameters and process inputs, where the predicted process outputs are useable to analyze and/or control the nonlinear process. The combined model may be trained in an integrated manner, e.g., substantially concurrently, by identifying process inputs and outputs (I/O), collecting data for process I/O, determining constraints on model behavior from prior knowledge, formulating an optimization problem, executing an optimization algorithm to determine model parameters subject to the determined constraints, and verifying the compliance of the model with the constraints.
    • 用于建模非线性过程的系统和方法。 用于非线性过程的预测优化或控制的组合模型包括耦合到参数化动态或静态模型的非线性近似器,可操作以对非线性过程建模。 非线性近似器接收过程输入,并为参数化动态模型生成参数。 参数化动态模型接收参数和过程输入,并根据参数和过程输入生成预测过程输出,其中预测过程输出可用于分析和/或控制非线性过程。 组合模型可以通过识别过程输入和输出(I / O),收集过程I / O的数据,确定来自先验知识的模型行为的约束,制定优化问题,以基本上同时的方式进行训练, 执行优化算法以确定受限于确定的模型参数,并验证模型与约束的一致性。
    • 2. 发明申请
    • TRAINING A MODEL OF A NON-LINEAR PROCESS
    • 培养非线性过程的模型
    • US20080235166A1
    • 2008-09-25
    • US12112750
    • 2008-04-30
    • Bijan Sayyar-RodsariEdward PlumerEric HartmanKadir LianoCelso Axelrud
    • Bijan Sayyar-RodsariEdward PlumerEric HartmanKadir LianoCelso Axelrud
    • G06F15/18
    • G05B13/048G05B13/042G05B17/02
    • System and method for modeling a nonlinear process. A combined model for predictive optimization or control of a nonlinear process includes a nonlinear approximator, coupled to a parameterized dynamic or static model, operable to model the nonlinear process. The nonlinear approximator receives process inputs, and generates parameters for the parameterized dynamic model. The parameterized dynamic model receives the parameters and process inputs, and generates predicted process outputs based on the parameters and process inputs, where the predicted process outputs are useable to analyze and/or control the nonlinear process. The combined model may be trained in an integrated manner, e.g., substantially concurrently, by identifying process inputs and outputs (I/O), collecting data for process I/O, determining constraints on model behavior from prior knowledge, formulating an optimization problem, executing an optimization algorithm to determine model parameters subject to the determined constraints, and verifying the compliance of the model with the constraints.
    • 用于建模非线性过程的系统和方法。 用于非线性过程的预测优化或控制的组合模型包括耦合到参数化动态或静态模型的非线性近似器,可操作以对非线性过程建模。 非线性近似器接收过程输入,并为参数化动态模型生成参数。 参数化动态模型接收参数和过程输入,并根据参数和过程输入生成预测过程输出,其中预测过程输出可用于分析和/或控制非线性过程。 组合模型可以通过识别过程输入和输出(I / O),收集过程I / O的数据,确定来自先验知识的模型行为的约束,制定优化问题,以基本上同时的方式进行训练, 执行优化算法以确定受限于确定的模型参数,并验证模型与约束的一致性。
    • 3. 发明申请
    • Parametric universal nonlinear dynamics approximator and use
    • 参数通用非线性动力学近似和使用
    • US20050187643A1
    • 2005-08-25
    • US10842157
    • 2004-05-10
    • Bijan Sayyar-RodsariEdward PlumerEric HartmanKadir LianoCelso Axelrud
    • Bijan Sayyar-RodsariEdward PlumerEric HartmanKadir LianoCelso Axelrud
    • G05B13/02G05B13/04G05B17/02G06F15/18
    • G05B13/048G05B13/042G05B17/02
    • System and method for modeling a nonlinear process. A combined model for predictive optimization or control of a nonlinear process includes a nonlinear approximator, coupled to a parameterized dynamic or static model, operable to model the nonlinear process. The nonlinear approximator receives process inputs, and generates parameters for the parameterized dynamic model. The parameterized dynamic model receives the parameters and process inputs, and generates predicted process outputs based on the parameters and process inputs, where the predicted process outputs are useable to analyze and/or control the nonlinear process. The combined model may be trained in an integrated manner, e.g., substantially concurrently, by identifying process inputs and outputs (I/O), collecting data for process I/O, determining constraints on model behavior from prior knowledge, formulating an optimization problem, executing an optimization algorithm to determine model parameters subject to the determined constraints, and verifying the compliance of the model with the constraints.
    • 用于建模非线性过程的系统和方法。 用于非线性过程的预测优化或控制的组合模型包括耦合到参数化动态或静态模型的非线性近似器,可操作以对非线性过程建模。 非线性近似器接收过程输入,并为参数化动态模型生成参数。 参数化动态模型接收参数和过程输入,并根据参数和过程输入生成预测过程输出,其中预测过程输出可用于分析和/或控制非线性过程。 组合模型可以通过识别过程输入和输出(I / O),收集过程I / O的数据,确定来自先验知识的模型行为的约束,制定优化问题,以基本上同时的方式进行训练, 执行优化算法以确定受限于确定的模型参数,并验证模型与约束的一致性。
    • 4. 发明申请
    • CONTROLLING A NON-LINEAR PROCESS
    • 控制非线性过程
    • US20080208778A1
    • 2008-08-28
    • US12112847
    • 2008-04-30
    • Bijan Sayyar-RodsariEdward PlumerEric HartmanKadir LianoCelson Axelrud
    • Bijan Sayyar-RodsariEdward PlumerEric HartmanKadir LianoCelson Axelrud
    • G06F15/18G05B13/02
    • G05B13/048G05B13/042G05B17/02
    • System and method for modeling a nonlinear process. A combined model for predictive optimization or control of a nonlinear process includes a nonlinear approximator, coupled to a parameterized dynamic or static model, operable to model the nonlinear process. The nonlinear approximator receives process inputs, and generates parameters for the parameterized dynamic model. The parameterized dynamic model receives the parameters and process inputs, and generates predicted process outputs based on the parameters and process inputs, where the predicted process outputs are useable to analyze and/or control the nonlinear process. The combined model may be trained in an integrated manner, e.g., substantially concurrently, by identifying process inputs and outputs (I/O), collecting data for process I/O, determining constraints on model behavior from prior knowledge, formulating an optimization problem, executing an optimization algorithm to determine model parameters subject to the determined constraints, and verifying the compliance of the model with the constraints.
    • 用于建模非线性过程的系统和方法。 用于非线性过程的预测优化或控制的组合模型包括耦合到参数化动态或静态模型的非线性近似器,可操作以对非线性过程建模。 非线性近似器接收过程输入,并为参数化动态模型生成参数。 参数化动态模型接收参数和过程输入,并根据参数和过程输入生成预测过程输出,其中预测过程输出可用于分析和/或控制非线性过程。 组合模型可以通过识别过程输入和输出(I / O),收集过程I / O的数据,确定来自先验知识的模型行为的约束,制定优化问题,以基本上同时的方式进行训练, 执行优化算法以确定受限于确定的模型参数,并验证模型与约束的一致性。
    • 5. 发明申请
    • Dynamic cost accounting
    • 动态成本会计
    • US20050065863A1
    • 2005-03-24
    • US10983874
    • 2004-11-08
    • Edward PlumerRobert GolightlyGraham GaylardRalph Ferguson
    • Edward PlumerRobert GolightlyGraham GaylardRalph Ferguson
    • G06Q10/06G06Q40/00G06F17/60
    • G06Q10/06G06Q40/12
    • A computer-implemented method for performing dynamic cost accounting for an enterprise, wherein the enterprise includes a costing system. The method includes programmatically retrieving input information for the costing system, e.g., from one or more (possibly remote) information sources over a network, dynamically updating the costing system in accordance with the retrieved input information to generate an updated costing system, and the updated costing system calculating one or more outputs which are usable in managing the enterprise. The retrieving and update may occur periodically, e.g., monthly, weekly, per hour, minute, second, millisecond, etc., or on demand. In some embodiments, the enterprise may further include one or more optimizers, wherein the optimizers are provided with the one or more outputs of the costing system, and executed to determine one or more optimal operating parameters for the enterprise. The determined optimal operating parameters are then used to manage or execute enterprise operations.
    • 一种用于对企业进行动态成本核算的计算机实现的方法,其中所述企业包括成本计算系统。 该方法包括以编程方式检索成本计算系统的输入信息,例如,通过网络从一个或多个(可能是远程的)信息源检索输入信息,根据所检索的输入信息动态地更新成本计算系统以生成更新的成本核算系统, 计算一个或多个可用于管理企业的输出的成本计算系统。 检索和更新可以周期性地出现,例如,每月,每周,每小时,分钟,秒,毫秒等,或按需。 在一些实施例中,企业还可以包括一个或多个优化器,其中向优化器提供成本计算系统的一个或多个输出,并被执行以确定企业的一个或多个最优操作参数。 然后使用确定的最佳操作参数来管理或执行企业操作。