会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Efficient algorithm for pairwise preference learning
    • 用于成对偏好学习的高效算法
    • US08280829B2
    • 2012-10-02
    • US12504460
    • 2009-07-16
    • Olivier ChapelleSathiya Keerthi Selvaraj
    • Olivier ChapelleSathiya Keerthi Selvaraj
    • G06F15/18
    • G06N99/005
    • In one embodiment, training a ranking model comprises: accessing the ranking model and an objective function of the ranking model; accessing one or more preference pairs of objects, wherein for each of the preference pairs of objects comprising a first object and a second object, there is a preference between the first object and the second object with respect to the particular reference, and the first object and the second object each has a feature vector comprising one or more feature values; and training the ranking model by minimizing the objective function using the preference pairs of objects, wherein for each of the preference pairs of objects, a difference between the first feature vector of the first object and the second feature vector of the second object is not calculated.
    • 在一个实施例中,训练排名模型包括:访问排名模型和排名模型的目标函数; 访问一个或多个偏好对对,其中对于包括第一对象和第二对象的对象的每个优选对,在第一对象和第二对象之间存在关于特定引用的偏好,并且第一对象 并且所述第二对象各自具有包括一个或多个特征值的特征向量; 并且通过使用对象的偏好对最小化目标函数来训练排名模型,其中对于每个偏好对的对象,不计算第一对象的第一特征向量与第二对象的第二特征向量之间的差异 。
    • 8. 发明申请
    • System and method for training a multi-class support vector machine to select a common subset of features for classifying objects
    • 用于训练多类支持向量机的系统和方法,以选择用于分类对象的特征的公共子集
    • US20090150309A1
    • 2009-06-11
    • US12001932
    • 2007-12-10
    • Olivier ChapelleSathiya Keerthi Selvaraj
    • Olivier ChapelleSathiya Keerthi Selvaraj
    • G06F15/18
    • G06K9/6249G06K9/6269
    • An improved system and method is provided for training a multi-class support vector machine to select a common subset of features for classifying objects. A multi-class support vector machine generator may be provided for learning classification functions to classify sets of objects into classes and may include a sparse support vector machine modeling engine for training a multi-class support vector machine using scaling factors by simultaneously selecting a common subset of features iteratively for all classes from sets of features representing each of the classes. An objective function using scaling factors to ensure sparsity of features may be iteratively minimized, and features may be retained and added until a small set of features stabilizes. Alternatively, a common subset of features may be found by iteratively removing at least one feature simultaneously for all classes from an active set of features initialized to represent the entire set of training features.
    • 提供了一种改进的系统和方法,用于训练多类支持向量机以选择用于分类对象的特征的公共子集。 可以提供多类支持向量机生成器用于学习分类功能以将对象集合分类到类中,并且可以包括稀疏支持向量机建模引擎,用于使用缩放因子来同时选择公共子集来训练多类支持向量机 的特征迭代地为表示每个类的特征的集合的所有类。 使用缩放因子以确保特征的稀疏性的目标函数可以被迭代地最小化,并且可以保留和添加特征,直到一小组特征稳定。 或者,可以通过从被初始化为表示整套训练特征的活动特征集合中的所有类别同时迭代地去除至少一个特征来发现特征的公共子集。
    • 10. 发明申请
    • CLICK MODEL FOR SEARCH RANKINGS
    • 点击模式搜索排名
    • US20100125570A1
    • 2010-05-20
    • US12273425
    • 2008-11-18
    • Olivier ChapelleAnne Ya Zhang
    • Olivier ChapelleAnne Ya Zhang
    • G06F17/30
    • G06F17/30864
    • Approaches and techniques are discussed for ranking the documents indicated in search results for a query based on click-through information collected for the query in previous query sessions. According to an embodiment of the invention, when calculating a relevance score for a particular document, one may overcome positional bias by utilizing click-through information about other documents previously returned in the same search results as the particular document. According to an embodiment, one may utilize Dynamic Bayesian Network, based on said click-through information, to model relevance. According to an embodiment of the invention, one may utilize click-through information to generate targets for learning a ranking function.
    • 讨论方法和技术,用于根据在以前的查询会话中为查询收集的点击信息对查询的搜索结果中指示的文档进行排名。 根据本发明的实施例,当计算特定文档的相关性得分时,可以通过利用与特定文档相同的搜索结果中先前返回的其他文档的点击信息来克服位置偏差。 根据实施例,可以基于所述点击信息来利用动态贝叶斯网络来模拟相关性。 根据本发明的实施例,可以利用点击信息来生成用于学习排名功能的目标。