会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • System and method for grouping airways and arteries for quantitative analysis
    • 用于分组气道和动脉进行定量分析的系统和方法
    • US08422748B2
    • 2013-04-16
    • US11470294
    • 2006-09-06
    • Benjamin OdryAtilla Peter KiralyCarol L. Novak
    • Benjamin OdryAtilla Peter KiralyCarol L. Novak
    • G06K9/00A61B5/08
    • G06T7/0012G06T7/11G06T2207/30101
    • A method for grouping airway and artery pairs, includes: computing a two-dimensional (2D) cross-section of an airway; identifying regions of high-intensity in the 2D cross-section; computing a first indicator for each of the high intensity regions, wherein the first indicator is an orientation measure of the high intensity region with respect to the airway; computing a second indicator for each of the high intensity regions, wherein the second indicator is a circularity measure of the high intensity region; computing a third indicator for each of the high intensity regions, wherein the third indicator is a proximity measure of the high intensity region with respect to the airway; summing the first through third indicators for each of the high intensity regions to obtain a score for each of the high intensity regions; and determining which of the high intensity regions is an artery corresponding to the airway based on its score.
    • 一种用于分组气道和动脉对的方法,包括:计算气道的二维(2D)横截面; 识别2D横截面中高强度的区域; 计算每个所述高强度区域的第一指示符,其中所述第一指示符是所述高强度区域相对于所述气道的取向测量; 计算每个高强度区域的第二指示符,其中第二指示符是高强度区域的圆度度量; 计算每个所述高强度区域的第三指示符,其中所述第三指示符是所述高强度区域相对于所述气道的接近度量; 对每个高强度区域的第一至第三指标求和,以获得每个高强度区域的得分; 并且基于其得分确定哪个高强度区域是对应于气道的动脉。
    • 6. 发明授权
    • System and method for automated detection of mucus plugs within bronchial tree in MSCT images
    • 用于自动检测MSCT图像中支气管树内粘液塞的系统和方法
    • US07929741B2
    • 2011-04-19
    • US11836966
    • 2007-08-10
    • Diran GuiliguianBenjamin OdryAtilla Peter Kiraly
    • Diran GuiliguianBenjamin OdryAtilla Peter Kiraly
    • G06K9/00
    • A61B5/08A61B6/50G06T7/0012G06T2207/10081G06T2207/30061
    • A method for detecting and localizing mucus plugs in digitized lung images, includes providing a digitized lung image volume comprising a plurality of intensities corresponding to a 3-dimensional grid of points, extracting a bronchial tree from said lung image, said bronchial tree comprising a plurality of branching airways terminating at terminal points, providing a model of a 2-dimensional cross section of an airway, selecting an extended point beyond a terminal point of an airway branch in a direction of said airway branch, obtaining a 2-dimensional cross section I of size m×n points from said lung image about said selected point, processing said 2D cross section I by calculating a local neighborhood function for each point in the cross section and forming a union of all local neighborhood functions, and calculating a correlation between processed 2D cross section and said airway model, wherein said correlation is indicative of the presence of a mucus plug within said airway.
    • 一种用于检测和定位数字化肺图像中的粘液塞的方法,包括提供数字化肺图像体积,其包括对应于三维网格点的多个强度,从所述肺图像提取支气管树,所述支气管树包括多个 在终点处终止的分支气道,提供气道的二维截面的模型,在所述气道支路的方向上选择超出气道支路的终点的延伸点,获得二维截面I 从所述肺图像的尺寸m×n的点到所述选择点,通过计算横截面中的每个点的局部邻域函数并且形成所有局部邻域函数的并集,并且计算处理的所述二维横截面I之间的相关性 2D横截面和所述气道模型,其中所述相关性指示所述气道内存在粘液塞。
    • 8. 发明授权
    • System and method for solid component evaluation in mixed ground glass nodules
    • 混合玻璃结核固体成分评价系统及方法
    • US07949162B2
    • 2011-05-24
    • US11836991
    • 2007-08-10
    • Benjamin OdryLi Zhang
    • Benjamin OdryLi Zhang
    • G06K9/00
    • G06T7/0012G06T7/136G06T2200/04G06T2207/10081G06T2207/30064G06T2207/30101
    • A method for segmenting a solid component (SC) in a ground glass nodule (GGN) includes providing a digitized image that includes a segmented GGN, the image comprising a plurality of intensities corresponding to a 3-dimensional grid of points, computing an intensity threshold that distinguishes a high intensity solid component of the GGN from a low intensity non-solid component, and applying the intensity threshold to identify a SC of the GGN and to identify regions of interest around the GGN, detecting whether or not a region of interest is a vessel, calculating a model for a detected vessel based on a radius and orientation of the vessel, and removing from the GGN segmentation all points that belong to both the model and the SC inside the GGN, and verifying whether a structure resulting from excluding the points qualifies as an SC.
    • 用于分割磨玻璃结节(GGN)中的固体组分(SC)的方法包括提供包括分段GGN的数字化图像,所述图像包括对应于3维网格点的多个强度,计算强度阈值 将GGN的高强度固体分量与低强度非固体分量区分开,并且应用强度阈值来识别GGN的SC并识别GGN周围的感兴趣区域,检测感兴趣区域是否为 根据容器的半径和取向计算检测到的容器的模型,并且从GGN中移除GGN中分离属于GGN内的模型和SC两者的所有点,并且验证是否排除了 积分符合SC标准。
    • 10. 发明授权
    • Method and system for patient identification in 3D digital medical images
    • 3D数字医学图像中患者识别的方法和系统
    • US07379576B2
    • 2008-05-27
    • US10974313
    • 2004-10-27
    • Hong ShenBenjamin OdryShuping Qing
    • Hong ShenBenjamin OdryShuping Qing
    • G06K9/00
    • G06T7/0012A61B6/5294G06T2207/30061Y10S378/901
    • A method of identifying a patient from digital medical images includes providing a first digital image volume of an organ of a patient and a second digital image volume of the same organ, segmenting each slice of the first image volume and calculating a cross-sectional area of the organ in each slice to form a first area profile, segmenting each slice of the second image volume and calculating a cross-sectional area of the organ in each slice to form a second area profile, and comparing the first area profile with the second area profile to determine a correlation value for the two profiles. Based on the correlation value between the first area profile and the second area profile, it is determined whether the first digital image volume of the organ and the second digital image volume of the same organ came from the same patient.
    • 从数字医学图像识别患者的方法包括提供患者的器官的第一数字图像体积和同一器官的第二数字图像体积,分割第一图像体积的每个切片,并计算第一图像体积的横截面积 每个切片中的器官以形成第一区域轮廓,分割第二图像体积的每个切片并计算每个切片中的器官的横截面面积以形成第二区域轮廓,并且将第一区域轮廓与第二区域 配置文件以确定两个配置文件的相关值。 基于第一区域轮廓和第二区域轮廓之间的相关值,确定器官的第一数字图像体积和同一器官的第二数字图像体积是否来自同一患者。