会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • System and method for speech personalization by need
    • 需要语音个性化的系统和方法
    • US09002713B2
    • 2015-04-07
    • US12480864
    • 2009-06-09
    • Andrej LjoljeAlistair D. ConkieAnn K. Syrdal
    • Andrej LjoljeAlistair D. ConkieAnn K. Syrdal
    • G10L15/00G10L25/00G10L21/00G10L15/07G10L15/26G10L15/10
    • G10L15/07G10L15/10G10L15/265
    • Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for speaker recognition personalization. The method recognizes speech received from a speaker interacting with a speech interface using a set of allocated resources, the set of allocated resources including bandwidth, processor time, memory, and storage. The method records metrics associated with the recognized speech, and after recording the metrics, modifies at least one of the allocated resources in the set of allocated resources commensurate with the recorded metrics. The method recognizes additional speech from the speaker using the modified set of allocated resources. Metrics can include a speech recognition confidence score, processing speed, dialog behavior, requests for repeats, negative responses to confirmations, and task completions. The method can further store a speaker personalization profile having information for the modified set of allocated resources and recognize speech associated with the speaker based on the speaker personalization profile.
    • 这里公开了用于说话人识别个性化的系统,计算机实现的方法和有形的计算机可读存储介质。 该方法使用一组分配的资源来识别从与语音接口交互的扬声器接收的语音,所分配的资源的集合包括带宽,处理器时间,存储器和存储。 该方法记录与识别的语音相关联的度量,并且在记录度量之后,修改与记录的度量相称的所分配资源集合中的所分配的资源中的至少一个。 该方法使用经修改的分配资源集来识别来自扬声器的附加语音。 指标可以包括语音识别置信度分数,处理速度,对话行为,重复请求,对确认的否定响应以及任务完成。 该方法还可以存储具有用于所修改的分配资源集合的信息的扬声器个性化简档,并且基于说话者个性化简档识别与说话者相关联的语音。
    • 2. 发明授权
    • System and method for pronunciation modeling
    • 发音建模的系统和方法
    • US08073693B2
    • 2011-12-06
    • US12328407
    • 2008-12-04
    • Andrej LjoljeAlistair D. ConkieAnn K. Syrdal
    • Andrej LjoljeAlistair D. ConkieAnn K. Syrdal
    • G10L15/02
    • G10L15/187G10L15/183G10L2015/025
    • Systems, computer-implemented methods, and tangible computer-readable media for generating a pronunciation model. The method includes identifying a generic model of speech composed of phonemes, identifying a family of interchangeable phonemic alternatives for a phoneme in the generic model of speech, labeling the family of interchangeable phonemic alternatives as referring to the same phoneme, and generating a pronunciation model which substitutes each family for each respective phoneme. In one aspect, the generic model of speech is a vocal tract length normalized acoustic model. Interchangeable phonemic alternatives can represent a same phoneme for different dialectal classes. An interchangeable phonemic alternative can include a string of phonemes.
    • 系统,计算机实现的方法和用于生成发音模型的有形计算机可读介质。 该方法包括识别由音素组成的通用语音模型,在通用语音模型中识别音素的可互换音素替代品系列,将可互换音素替代品的家族标记为指相同的音素,以及生成发音模型,其中 将每个家庭的每个音素替代。 在一个方面,语音的通用模型是声道长度归一化声学模型。 可互换的音素替代品可以代表不同方言课程的相同音素。 可互换的音素替代品可以包括一串音素。
    • 4. 发明授权
    • System and method for pronunciation modeling
    • 发音建模的系统和方法
    • US08862470B2
    • 2014-10-14
    • US13302380
    • 2011-11-22
    • Andrej LjoljeAlistair D. ConkieAnn K. Syrdal
    • Andrej LjoljeAlistair D. ConkieAnn K. Syrdal
    • G10L15/187G10L15/183
    • G10L15/187G10L15/183G10L2015/025
    • Systems, computer-implemented methods, and tangible computer-readable media for generating a pronunciation model. The method includes identifying a generic model of speech composed of phonemes, identifying a family of interchangeable phonemic alternatives for a phoneme in the generic model of speech, labeling the family of interchangeable phonemic alternatives as referring to the same phoneme, and generating a pronunciation model which substitutes each family for each respective phoneme. In one aspect, the generic model of speech is a vocal tract length normalized acoustic model. Interchangeable phonemic alternatives can represent a same phoneme for different dialectal classes. An interchangeable phonemic alternative can include a string of phonemes.
    • 系统,计算机实现的方法和用于生成发音模型的有形计算机可读介质。 该方法包括识别由音素组成的通用语音模型,在通用语音模型中识别音素的可互换音素替代品系列,将可互换音素替代品的家族标记为指相同的音素,以及生成发音模型,其中 将每个家庭的每个音素替代。 在一个方面,语音的通用模型是声道长度归一化声学模型。 可互换的音素替代品可以代表不同方言课程的相同音素。 可互换的音素替代品可以包括一串音素。
    • 5. 发明申请
    • SYSTEM AND METHOD FOR PRONUNCIATION MODELING
    • 发明建模系统与方法
    • US20120065975A1
    • 2012-03-15
    • US13302380
    • 2011-11-22
    • Andrej LjoljeAlistair D. ConkieAnn K. Syrdal
    • Andrej LjoljeAlistair D. ConkieAnn K. Syrdal
    • G10L15/04
    • G10L15/187G10L15/183G10L2015/025
    • Systems, computer-implemented methods, and tangible computer-readable media for generating a pronunciation model. The method includes identifying a generic model of speech composed of phonemes, identifying a family of interchangeable phonemic alternatives for a phoneme in the generic model of speech, labeling the family of interchangeable phonemic alternatives as referring to the same phoneme, and generating a pronunciation model which substitutes each family for each respective phoneme. In one aspect, the generic model of speech is a vocal tract length normalized acoustic model. Interchangeable phonemic alternatives can represent a same phoneme for different dialectal classes. An interchangeable phonemic alternative can include a string of phonemes.
    • 系统,计算机实现的方法和用于生成发音模型的有形计算机可读介质。 该方法包括识别由音素组成的通用语音模型,在通用语音模型中识别音素的可互换音素替代品系列,将可互换音素替代品的家族标记为指相同的音素,以及生成发音模型,其中 将每个家庭的每个音素替代。 在一个方面,语音的通用模型是声道长度归一化声学模型。 可互换的音素替代品可以代表不同方言课程的相同音素。 可互换的音素替代品可以包括一串音素。
    • 6. 发明授权
    • System and method for increasing recognition rates of in-vocabulary words by improving pronunciation modeling
    • 通过改进发音建模来增加词汇单词识别率的系统和方法
    • US08892441B2
    • 2014-11-18
    • US13311512
    • 2011-12-05
    • Alistair D. ConkieMazin GilbertAndrej Ljolje
    • Alistair D. ConkieMazin GilbertAndrej Ljolje
    • G10L15/187G10L15/06
    • G06F17/277G10L15/063G10L15/187
    • The present disclosure relates to systems, methods, and computer-readable media for generating a lexicon for use with speech recognition. The method includes overgenerating potential pronunciations based on symbolic input, identifying potential pronunciations in a speech recognition context, and storing the identified potential pronunciations in a lexicon. Overgenerating potential pronunciations can include establishing a set of conversion rules for short sequences of letters, converting portions of the symbolic input into a number of possible lexical pronunciation variants based on the set of conversion rules, modeling the possible lexical pronunciation variants in one of a weighted network and a list of phoneme lists, and iteratively retraining the set of conversion rules based on improved pronunciations. Symbolic input can include multiple examples of a same spoken word. Speech data can be labeled explicitly or implicitly and can include words as text and recorded audio.
    • 本公开涉及用于生成用于语音识别的词典的系统,方法和计算机可读介质。 该方法包括基于符号输入过度生成潜在发音,识别语音识别语境中的潜在发音,以及将识别的潜在发音存储在词典中。 过度生成潜在发音可以包括为短的字母序列建立一组转换规则,基于一组转换规则将符号输入的部分转换成许多可能的词汇发音变体,对可能的词汇发音变体在加权 网络和音素列表,并且基于改进的发音迭代地重新训练一组转换规则。 符号输入可以包括相同口语单词的多个示例。 语音数据可以被明确地或隐含地标记,并且可以将单词包括为文本和记录的音频。
    • 7. 发明授权
    • System and method for handling missing speech data
    • 用于处理丢失的语音数据的系统和方法
    • US08751229B2
    • 2014-06-10
    • US12275920
    • 2008-11-21
    • Andrej LjoljeAlistair D. Conkie
    • Andrej LjoljeAlistair D. Conkie
    • G10L15/00
    • G10L15/1815G06F17/27G10L13/027G10L15/02G10L15/04G10L15/20G10L25/87G10L2015/025
    • Disclosed herein are systems, computer-implemented methods, and tangible computer-readable media for handling missing speech data. The computer-implemented method includes receiving speech with a missing segment, generating a plurality of hypotheses for the missing segment, identifying a best hypothesis for the missing segment, and recognizing the received speech by inserting the identified best hypothesis for the missing segment. In another method embodiment, the final step is replaced with synthesizing the received speech by inserting the identified best hypothesis for the missing segment. In one aspect, the method further includes identifying a duration for the missing segment and generating the plurality of hypotheses of the identified duration for the missing segment. The step of identifying the best hypothesis for the missing segment can be based on speech context, a pronouncing lexicon, and/or a language model. Each hypothesis can have an identical acoustic score.
    • 本文公开了用于处理丢失的语音数据的系统,计算机实现的方法和有形的计算机可读介质。 计算机实现的方法包括接收具有缺失段的语音,为缺失段生成多个假设,识别缺失段的最佳假设,以及通过为缺失段插入所识别的最佳假设来识别接收到的语音。 在另一种方法实施例中,通过为缺失的段插入所识别的最佳假设,来代替最后的步骤来合成所接收的语音。 在一个方面,所述方法还包括识别缺失段的持续时间并为缺失段生成所识别的持续时间的多个假设。 识别缺失片段的最佳假设的步骤可以基于语音上下文,发音词典和/或语言模型。 每个假设可以具有相同的声学得分。
    • 8. 发明申请
    • SYSTEM AND METHOD FOR HANDLING MISSING SPEECH DATA
    • 用于处理丢失语音数据的系统和方法
    • US20100131264A1
    • 2010-05-27
    • US12275920
    • 2008-11-21
    • Andrej LjoljeAlistair D. Conkie
    • Andrej LjoljeAlistair D. Conkie
    • G06F17/27G10L15/18
    • G10L15/1815G06F17/27G10L13/027G10L15/02G10L15/04G10L15/20G10L25/87G10L2015/025
    • Disclosed herein are systems, computer-implemented methods, and tangible computer-readable media for handling missing speech data. The computer-implemented method includes receiving speech with a missing segment, generating a plurality of hypotheses for the missing segment, identifying a best hypothesis for the missing segment, and recognizing the received speech by inserting the identified best hypothesis for the missing segment. In another method embodiment, the final step is replaced with synthesizing the received speech by inserting the identified best hypothesis for the missing segment. In one aspect, the method further includes identifying a duration for the missing segment and generating the plurality of hypotheses of the identified duration for the missing segment. The step of identifying the best hypothesis for the missing segment can be based on speech context, a pronouncing lexicon, and/or a language model. Each hypothesis can have an identical acoustic score.
    • 本文公开了用于处理丢失的语音数据的系统,计算机实现的方法和有形的计算机可读介质。 计算机实现的方法包括接收具有缺失段的语音,为缺失段生成多个假设,识别缺失段的最佳假设,以及通过为缺失段插入所识别的最佳假设来识别接收到的语音。 在另一种方法实施例中,通过为缺失的段插入所识别的最佳假设,来代替最后的步骤来合成所接收的语音。 在一个方面,所述方法还包括识别缺失段的持续时间并为缺失段生成所识别的持续时间的多个假设。 识别缺失片段的最佳假设的步骤可以基于语音上下文,发音词典和/或语言模型。 每个假设可以具有相同的声学得分。
    • 10. 发明申请
    • SYSTEM AND METHOD FOR DISCRIMINATIVE PRONUNCIATION MODELING FOR VOICE SEARCH
    • 用于语音搜索的分辨率发音建模的系统和方法
    • US20100125457A1
    • 2010-05-20
    • US12274025
    • 2008-11-19
    • Mazin GilbertAlistair D. ConkieAndrej Ljolje
    • Mazin GilbertAlistair D. ConkieAndrej Ljolje
    • G10L15/04
    • G10L15/063G10L2015/025
    • Disclosed herein are systems, computer-implemented methods, and computer-readable media for speech recognition. The method includes receiving speech utterances, assigning a pronunciation weight to each unit of speech in the speech utterances, each respective pronunciation weight being normalized at a unit of speech level to sum to 1, for each received speech utterance, optimizing the pronunciation weight by (1) identifying word and phone alignments and corresponding likelihood scores, and (2) discriminatively adapting the pronunciation weight to minimize classification errors, and recognizing additional received speech utterances using the optimized pronunciation weights. A unit of speech can be a sentence, a word, a context-dependent phone, a context-independent phone, or a syllable. The method can further include discriminatively adapting pronunciation weights based on an objective function. The objective function can be maximum mutual information (MMI), maximum likelihood (MLE) training, minimum classification error (MCE) training, or other functions known to those of skill in the art. Speech utterances can be names. The speech utterances can be received as part of a multimodal search or input. The step of discriminatively adapting pronunciation weights can further include stochastically modeling pronunciations.
    • 本文公开了用于语音识别的系统,计算机实现的方法和计算机可读介质。 该方法包括接收语音话语,在语音话语中为每个语音单元分配发音权重,将每个相应的发音权重以语音级别为单位归一化为1,对于每个接收到的语音话语,通过( 1)识别词和电话对齐和相应的可能性分数,以及(2)歧视地调整发音权重以最小化分类错误,以及使用优化的发音权重来识别附加的接收到的语音话语。 语音单位可以是句子,单词,上下文相关的电话,与上下文无关的电话或音节。 该方法还可以包括基于目标函数的歧视地适应发音权重。 目标函数可以是本领域技术人员已知的最大相互信息(MMI),最大似然(MLE)训练,最小分类误差(MCE)训练或其他功能。 言语言可以是名字。 可以作为多模态搜索或输入的一部分接收演讲话语。 歧视性地适应发音权重的步骤还可以包括随机建模发音。