会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD FOR COMPUTING FOOD VOLUME IN A METHOD FOR ANALYZING FOOD
    • 用于分析食物的方法中的食物体积的方法
    • US20110182477A1
    • 2011-07-28
    • US12758208
    • 2010-04-12
    • Amir TamrakarHarpreet Singh SawhneyQian YuAjay Divakaran
    • Amir TamrakarHarpreet Singh SawhneyQian YuAjay Divakaran
    • G06K9/00
    • G06T7/0002G06T7/44G06T7/593G06T7/62G06T7/77G06T2207/20016G06T2207/30128
    • A computer-implemented method for estimating a volume of at least one food item on a food plate is disclosed. A first and second plurality of images are received from different positions above a food plate, wherein angular spacing between the positions of the first plurality of images is greater than angular spacing between the positions of the second plurality of images. A first set of poses of each of the first plurality of images is estimated. A second set of poses of each of the second plurality of images is estimated based on at least the first set of poses. A pair of images taken from each of the first and second plurality of images is rectified based on at least the first and second set of poses. A 3D point cloud is reconstructed based on at least the rectified pair of images. At least one surface of the at least one food item above the food plate is estimated based on at least the reconstructed 3D point cloud. The volume of the at least one food item is estimated based on the at least one surface.
    • 公开了一种用于估计食品板上的至少一种食品的体积的计算机实现的方法。 从食品牌上方的不同位置接收第一和第二多个图像,其中第一多个图像的位置之间的角度间隔大于第二多个图像的位置之间的角度间隔。 估计第一多个图像中的每一个的第一组姿势。 基于至少第一组姿势来估计第二组多个图像中的每一个的第二组姿势。 从第一和第二多个图像中的每一个拍摄的一对图像至少基于第一和第二组姿势进行整改。 至少基于整流图像对来重构3D点云。 基于至少重构的3D点云来估计食物板上方的至少一个食物的至少一个表面。 基于至少一个表面来估计至少一个食物的体积。
    • 2. 发明授权
    • Method for computing food volume in a method for analyzing food
    • 食物分析方法计算食物量的方法
    • US08345930B2
    • 2013-01-01
    • US12758208
    • 2010-04-12
    • Amir TamrakarHarpreet Singh SawhneyQian YuAjay Divakaran
    • Amir TamrakarHarpreet Singh SawhneyQian YuAjay Divakaran
    • G06K9/00
    • G06T7/0002G06T7/44G06T7/593G06T7/62G06T7/77G06T2207/20016G06T2207/30128
    • A computer-implemented method for estimating a volume of at least one food item on a food plate is disclosed. A first and second plurality of images are received from different positions above a food plate, wherein angular spacing between the positions of the first plurality of images is greater than angular spacing between the positions of the second plurality of images. A first set of poses of each of the first plurality of images is estimated. A second set of poses of each of the second plurality of images is estimated based on at least the first set of poses. A pair of images taken from each of the first and second plurality of images is rectified based on at least the first and second set of poses. A 3D point cloud is reconstructed based on at least the rectified pair of images. At least one surface of the at least one food item above the food plate is estimated based on at least the reconstructed 3D point cloud. The volume of the at least one food item is estimated based on the at least one surface.
    • 公开了一种用于估计食品板上的至少一种食品的体积的计算机实现的方法。 从食品牌上方的不同位置接收第一和第二多个图像,其中第一多个图像的位置之间的角度间隔大于第二多个图像的位置之间的角度间隔。 估计第一多个图像中的每一个的第一组姿势。 基于至少第一组姿势来估计第二组多个图像中的每一个的第二组姿势。 从第一和第二多个图像中的每一个拍摄的一对图像至少基于第一和第二组姿势进行整改。 至少基于整流图像对来重构3D点云。 基于至少重构的3D点云来估计食物板上方的至少一个食物的至少一个表面。 基于至少一个表面来估计至少一个食物的体积。
    • 3. 发明授权
    • Weapon identification using acoustic signatures across varying capture conditions
    • 使用声学签名的武器识别在不同的捕获条件下
    • US08385154B2
    • 2013-02-26
    • US12766219
    • 2010-04-23
    • Saad KhanAjay DivakaranHarpreet Singh Sawhney
    • Saad KhanAjay DivakaranHarpreet Singh Sawhney
    • G01S3/80
    • G10L25/48
    • A computer implemented method for automatically detecting and classifying acoustic signatures across a set of recording conditions is disclosed. A first acoustic signature is received. The first acoustic signature is projected into a space of a minimal set of exemplars of acoustic signature types derived from a larger set of exemplars using a wrapper method. At least one vector distance is calculated between the projected acoustic signature and each exemplar of the minimal set of exemplars. An exemplar is selected from the minimal set of exemplars having the smallest vector distance to the projected acoustic signature as a class corresponding to and classifying the first acoustic signature. The first acoustic signature and the plurality of acoustic signatures may correspond to one of gunshots, musical instruments, songs, and speech. The minimal set of exemplars may correspond to a hierarchy of acoustic signature types.
    • 公开了一种用于在一组记录条件下自动检测和分类声学签名的计算机实现的方法。 接收到第一个声学签名。 第一声​​学签名被投影到使用包装方法从更大的样本集合导出的声学签名类型的最小样本集合的空间中。 在投影的声学特征与最小样本集的每个样本之间计算至少一个矢量距离。 从具有与投影的声学签名的最小向量距离的最小样本集合中选择一个范例作为对应于和分类第一声学签名的类别。 第一声​​学签名和多个声学签名可以对应于枪声,乐器,歌曲和语音之一。 最小的一组样本可以对应于声学签名类型的层级。
    • 9. 发明授权
    • Method for pose invariant vessel fingerprinting
    • 姿态不变血管指纹方法
    • US08330819B2
    • 2012-12-11
    • US12758507
    • 2010-04-12
    • Sang-Hack JungAjay DivakaranHarpreet Singh Sawhney
    • Sang-Hack JungAjay DivakaranHarpreet Singh Sawhney
    • H04N7/18
    • G06K9/00771G06K9/6206G06K9/6211
    • A computer-implemented method for for matching objects is disclosed. At least two images where one of the at least two images has a first target object and a second of the at least two images has a second target object are received. At least one first patch from the first target object and at least one second patch from the second target object are extracted. A distance-based part encoding between each of the at least one first patch and the at least one second patch based upon a corresponding codebook of image parts including at least one of part type and pose is constructed. A viewpoint of one of the at least one first patch is warped to a viewpoint of the at least one second patch. A parts level similarity measure based on the view-invariant distance measure for each of the at least one first patch and the at least one second patch is applied to determine whether the first target object and the second target object are the same or different objects.
    • 公开了一种用于匹配对象的计算机实现的方法。 接收至少两个图像,其中至少两个图像中的一个具有第一目标对象,并且至少两个图像中的第二图像具有第二目标对象。 提取来自第一目标对象的至少一个第一补丁和来自第二目标对象的至少一个第二补丁。 构建基于包括部件类型和姿态中的至少一个的图像部件的对应码本的至少一个第一贴片和至少一个第二贴片中的每一个之间的基于距离的部件编码。 所述至少一个第一贴片中的一个的视点弯曲到所述至少一个第二贴片的观点。 应用基于对于至少一个第一贴片和至少一个第二贴片中的每一个的视图不变距离度量的零件级相似性度量来确定第一目标对象和第二目标对象是相同还是不同的对象。
    • 10. 发明申请
    • WEAPON IDENTIFICATION USING ACOUSTIC SIGNATURES ACROSS VARYING CAPTURE CONDITIONS
    • 使用声音识别的武器识别符合各种不同的捕获条件
    • US20100271905A1
    • 2010-10-28
    • US12766219
    • 2010-04-23
    • Saad KhanAjay DivakaranHarpreet Singh Sawhney
    • Saad KhanAjay DivakaranHarpreet Singh Sawhney
    • G01S3/80
    • G10L25/48
    • A computer implemented method for automatically detecting and classifying acoustic signatures across a set of recording conditions is disclosed. A first acoustic signature is received. The first acoustic signature is projected into a space of a minimal set of exemplars of acoustic signature types derived from a larger set of exemplars using a wrapper method. At least one vector distance is calculated between the projected acoustic signature and each exemplar of the minimal set of exemplars. An exemplar is selected from the minimal set of exemplars having the smallest vector distance to the projected acoustic signature as a class corresponding to and classifying the first acoustic signature. The first acoustic signature and the plurality of acoustic signatures may correspond to one of gunshots, musical instruments, songs, and speech. The minimal set of exemplars may correspond to a hierarchy of acoustic signature types.
    • 公开了一种用于在一组记录条件下自动检测和分类声学签名的计算机实现的方法。 接收到第一个声学签名。 第一声​​学签名被投影到使用包装方法从更大的样本集合导出的声学签名类型的最小样本集合的空间中。 在投影的声学特征与最小样本集的每个样本之间计算至少一个矢量距离。 从具有与投影的声学签名的最小向量距离的最小样本集合中选择一个示例作为对应于和分类第一声学签名的类别。 第一声​​学签名和多个声学签名可以对应于枪声,乐器,歌曲和语音之一。 最小的一组样本可以对应于声学签名类型的层级。