会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • System and method for referring to entities in a discourse domain
    • 用于引用话语域中的实体的系统和方法
    • US08175873B2
    • 2012-05-08
    • US12333863
    • 2008-12-12
    • Giuseppe Di FabbrizioSrinivas BangaloreAmanda Stent
    • Giuseppe Di FabbrizioSrinivas BangaloreAmanda Stent
    • G10L21/06G10L15/26
    • G06F17/2881G06F17/279G10L13/027
    • Systems, methods, and non-transitory computer-readable media for referring to entities. The method includes receiving domain-specific training data of sentences describing a target entity in a context, extracting a speaker history and a visual context from the training data, selecting attributes of the target entity based on at least one of the speaker history, the visual context, and speaker preferences, generating a text expression referring to the target entity based on at least one of the selected attributes, the speaker history, and the context, and outputting the generated text expression. The weighted finite-state automaton can represent partial orderings of word pairs in the domain-specific training data. The weighted finite-state automaton can be speaker specific or speaker independent. The weighted finite-state automaton can include a set of weighted partial orderings of the training data for each possible realization.
    • 用于引用实体的系统,方法和非暂时计算机可读介质。 该方法包括接收在上下文中描述目标实体的句子的特定领域的训练数据,从训练数据中提取讲者历史和视觉上下文,基于说话者的历史,视觉上的至少一个来选择目标实体的属性 上下文和说话人首选项,基于所选择的属性,说话者历史和上下文中的至少一个生成参考目标实体的文本表达,并输出所生成的文本表达。 加权有限状态自动机可以表示域特定训练数据中单词对的部分排序。 加权有限状态自动机可以是扬声器专用或扬声器独立的。 加权有限状态自动机可以包括用于每个可能实现的训练数据的一组加权部分排序。
    • 2. 发明授权
    • System and method for dialog modeling
    • 对话建模的系统和方法
    • US09129601B2
    • 2015-09-08
    • US12324340
    • 2008-11-26
    • Amanda StentSrinivas Bangalore
    • Amanda StentSrinivas Bangalore
    • G06F17/22G10L15/08G10L15/22G10L15/183G10L15/18
    • G10L15/063G06F17/22G06F17/2241G06F17/227G10L15/005G10L15/04G10L15/08G10L15/18G10L15/183G10L15/22G10L25/12G10L2015/0638
    • Disclosed herein are systems, computer-implemented methods, and computer-readable media for dialog modeling. The method includes receiving spoken dialogs annotated to indicate dialog acts and task/subtask information, parsing the spoken dialogs with a hierarchical, parse-based dialog model which operates incrementally from left to right and which only analyzes a preceding dialog context to generate parsed spoken dialogs, and constructing a functional task structure of the parsed spoken dialogs. The method can further either interpret user utterances with the functional task structure of the parsed spoken dialogs or plan system responses to user utterances with the functional task structure of the parsed spoken dialogs. The parse-based dialog model can be a shift-reduce model, a start-complete model, or a connection path model.
    • 本文公开了用于对话建模的系统,计算机实现的方法和计算机可读介质。 该方法包括接收注释以指示对话行为和任务/子任务信息的口头对话,用从层级,基于解析的对话模型解析口头对话,该对话模型从左向右逐渐操作,并且仅分析前一对话上下文以产生解析的口语对话 ,并构建解析的语音对话的功能任务结构。 该方法还可以用解析的口头对话的功能任务结构或用解析的口语对话的功能性任务结构对用户话语的计划系统响应来解释用户话语。 基于分析的对话模型可以是移位减少模型,起始完成模型或连接路径模型。
    • 3. 发明授权
    • System and method for referring to entities in a discourse domain
    • 用于引用话语域中的实体的系统和方法
    • US08566090B2
    • 2013-10-22
    • US13465685
    • 2012-05-07
    • Giuseppe Di FabbrizioSrinivas BangaloreAmanda Stent
    • Giuseppe Di FabbrizioSrinivas BangaloreAmanda Stent
    • G10L13/027
    • G06F17/2881G06F17/279G10L13/027
    • Systems, methods, and non-transitory computer-readable media for referring to entities. The method includes receiving domain-specific training data of sentences describing a target entity in a context, extracting a speaker history and a visual context from the training data, selecting attributes of the target entity based on at least one of the speaker history, the visual context, and speaker preferences, generating a text expression referring to the target entity based on at least one of the selected attributes, the speaker history, and the context, and outputting the generated text expression. The weighted finite-state automaton can represent partial orderings of word pairs in the domain-specific training data. The weighted finite-state automaton can be speaker specific or speaker independent. The weighted finite-state automaton can include a set of weighted partial orderings of the training data for each possible realization.
    • 用于引用实体的系统,方法和非暂时计算机可读介质。 该方法包括接收在上下文中描述目标实体的句子的特定领域的训练数据,从训练数据中提取讲者历史和视觉上下文,基于说话者的历史,视觉上的至少一个来选择目标实体的属性 上下文和说话人首选项,基于所选择的属性,说话者历史和上下文中的至少一个生成参考目标实体的文本表达,并输出所生成的文本表达。 加权有限状态自动机可以表示域特定训练数据中单词对的部分排序。 加权有限状态自动机可以是扬声器专用或扬声器独立的。 加权有限状态自动机可以包括用于每个可能实现的训练数据的一组加权部分排序。
    • 4. 发明申请
    • SYSTEM AND METHOD FOR DIALOG MODELING
    • 对话建模系统与方法
    • US20100131274A1
    • 2010-05-27
    • US12324340
    • 2008-11-26
    • Amanda StentSrinivas Bangalore
    • Amanda StentSrinivas Bangalore
    • G10L15/18
    • G10L15/063G06F17/22G06F17/2241G06F17/227G10L15/005G10L15/04G10L15/08G10L15/18G10L15/183G10L15/22G10L25/12G10L2015/0638
    • Disclosed herein are systems, computer-implemented methods, and computer-readable media for dialog modeling. The method includes receiving spoken dialogs annotated to indicate dialog acts and task/subtask information, parsing the spoken dialogs with a hierarchical, parse-based dialog model which operates incrementally from left to right and which only analyzes a preceding dialog context to generate parsed spoken dialogs, and constructing a functional task structure of the parsed spoken dialogs. The method can further either interpret user utterances with the functional task structure of the parsed spoken dialogs or plan system responses to user utterances with the functional task structure of the parsed spoken dialogs. The parse-based dialog model can be a shift-reduce model, a start-complete model, or a connection path model.
    • 本文公开了用于对话建模的系统,计算机实现的方法和计算机可读介质。 该方法包括接收注释以指示对话行为和任务/子任务信息的口头对话,用从层级,基于解析的对话模型解析口头对话,该对话模型从左向右逐渐操作,并且仅分析前一对话上下文以产生解析的口语对话 ,并构建解析的语音对话的功能任务结构。 该方法还可以用解析的口头对话的功能任务结构或用解析的口语对话的功能性任务结构对用户话语的计划系统响应来解释用户话语。 基于分析的对话模型可以是移位减少模型,起始完成模型或连接路径模型。
    • 5. 发明申请
    • SYSTEM AND METHOD FOR REFERRING TO ENTITIES IN A DISCOURSE DOMAIN
    • 引导领域实体的系统和方法
    • US20120221332A1
    • 2012-08-30
    • US13465685
    • 2012-05-07
    • Giuseppe Di FabbrizioSrinivas BangaloreAmanda Stent
    • Giuseppe Di FabbrizioSrinivas BangaloreAmanda Stent
    • G10L15/26
    • G06F17/2881G06F17/279G10L13/027
    • Systems, methods, and non-transitory computer-readable media for referring to entities. The method includes receiving domain-specific training data of sentences describing a target entity in a context, extracting a speaker history and a visual context from the training data, selecting attributes of the target entity based on at least one of the speaker history, the visual context, and speaker preferences, generating a text expression referring to the target entity based on at least one of the selected attributes, the speaker history, and the context, and outputting the generated text expression. The weighted finite-state automaton can represent partial orderings of word pairs in the domain-specific training data. The weighted finite-state automaton can be speaker specific or speaker independent. The weighted finite-state automaton can include a set of weighted partial orderings of the training data for each possible realization.
    • 用于引用实体的系统,方法和非暂时计算机可读介质。 该方法包括接收在上下文中描述目标实体的句子的特定领域的训练数据,从训练数据中提取讲者历史和视觉上下文,基于说话者的历史,视觉上的至少一个来选择目标实体的属性 上下文和说话人首选项,基于所选择的属性,说话者历史和上下文中的至少一个生成参考目标实体的文本表达,并输出所生成的文本表达。 加权有限状态自动机可以表示域特定训练数据中单词对的部分排序。 加权有限状态自动机可以是扬声器专用或扬声器独立的。 加权有限状态自动机可以包括用于每个可能实现的训练数据的一组加权部分排序。
    • 6. 发明申请
    • SYSTEM AND METHOD FOR REFERRING TO ENTITIES IN A DISCOURSE DOMAIN
    • 引导领域实体的系统和方法
    • US20100153105A1
    • 2010-06-17
    • US12333863
    • 2008-12-12
    • Giuseppe DI FABBRIZIOSrinivas BangaloreAmanda Stent
    • Giuseppe DI FABBRIZIOSrinivas BangaloreAmanda Stent
    • G10L15/26
    • G06F17/2881G06F17/279G10L13/027
    • Disclosed herein are systems, computer-implemented methods, and tangible computer-readable media for referring to entities. The method includes receiving domain-specific training data of sentences describing a target entity in a context, extracting a speaker history and a visual context from the training data, selecting attributes of the target entity based on at least one of the speaker history, the visual context, and speaker preferences, generating a text expression referring to the target entity based on at least one of the selected attributes, the speaker history, and the context, and outputting the generated text expression. The weighted finite-state automaton can represent partial orderings of word pairs in the domain-specific training data. The weighted finite-state automaton can be speaker specific or speaker independent. The weighted finite-state automaton can include a set of weighted partial orderings of the training data for each possible realization.
    • 本文公开了用于引用实体的系统,计算机实现的方法和有形的计算机可读介质。 该方法包括接收在上下文中描述目标实体的句子的特定领域的训练数据,从训练数据中提取讲者历史和视觉上下文,基于说话者的历史,视觉上的至少一个来选择目标实体的属性 上下文和说话人首选项,基于所选择的属性,说话者历史和上下文中的至少一个生成参考目标实体的文本表达,并输出所生成的文本表达。 加权有限状态自动机可以表示域特定训练数据中单词对的部分排序。 加权有限状态自动机可以是扬声器专用或扬声器独立的。 加权有限状态自动机可以包括用于每个可能实现的训练数据的一组加权部分排序。
    • 8. 发明授权
    • System and method for generating challenge utterances for speaker verification
    • 用于产生演讲者验证的挑战话语的系统和方法
    • US09318114B2
    • 2016-04-19
    • US12954094
    • 2010-11-24
    • Ilija ZeljkovicTaniya MishraAmanda StentAnn K. SyrdalJay Wilpon
    • Ilija ZeljkovicTaniya MishraAmanda StentAnn K. SyrdalJay Wilpon
    • G10L17/00G10L17/24G10L15/08G10L17/26
    • G10L17/24G10L15/02G10L15/08G10L17/00G10L17/04G10L17/26G10L2015/025
    • Disclosed herein are systems, methods, and non-transitory computer-readable storage media relating to speaker verification. In one aspect, a system receives a first user identity from a second user, and, based on the identity, accesses voice characteristics. The system randomly generates a challenge sentence according to a rule and/or grammar, based on the voice characteristics, and prompts the second user to speak the challenge sentence. The system verifies that the second user is the first user if the spoken challenge sentence matches the voice characteristics. In an enrollment aspect, the system constructs an enrollment phrase that covers a minimum threshold of unique speech sounds based on speaker-distinctive phonemes, phoneme clusters, and prosody. Then user utters the enrollment phrase and extracts voice characteristics for the user from the uttered enrollment phrase. The system generates a user profile, based on the voice characteristics, for generating random challenge sentences according to a grammar.
    • 本文公开了与说话者验证有关的系统,方法和非暂时的计算机可读存储介质。 在一个方面,系统从第二用户接收第一用户身份,并且基于身份访问语音特征。 该系统根据语音特征根据规则和/或语法随机生成挑战句,并提示第二用户说出挑战句。 系统验证第二用户是否是第一个用户,如果口头的挑战句子与语音特征相匹配。 在注册方面,系统构建了一个基于扬声器独特音素,音素集群和韵律,覆盖独特语音的最小阈值的注册短语。 然后用户发出注册短语,并从发出的注册短语中提取用户的语音特征。 该系统基于语音特征生成用户简档,用于根据语法产生随机挑战语句。
    • 9. 发明申请
    • SYSTEM AND METHOD FOR GENERATING CHALLENGE UTTERANCES FOR SPEAKER VERIFICATION
    • 用于产生扬声器验证的挑战性的系统和方法
    • US20120130714A1
    • 2012-05-24
    • US12954094
    • 2010-11-24
    • Ilija ZeljkovicTaniya MishraAmanda StentAnn K. SyrdalJay Wilpon
    • Ilija ZeljkovicTaniya MishraAmanda StentAnn K. SyrdalJay Wilpon
    • G10L17/00G10L15/26
    • G10L17/24G10L15/02G10L15/08G10L17/00G10L17/04G10L17/26G10L2015/025
    • Disclosed herein are systems, methods, and non-transitory computer-readable storage media relating to speaker verification. In one aspect, a system receives a first user identity from a second user, and, based on the identity, accesses voice characteristics. The system randomly generates a challenge sentence according to a rule and/or grammar, based on the voice characteristics, and prompts the second user to speak the challenge sentence. The system verifies that the second user is the first user if the spoken challenge sentence matches the voice characteristics. In an enrollment aspect, the system constructs an enrollment phrase that covers a minimum threshold of unique speech sounds based on speaker-distinctive phonemes, phoneme clusters, and prosody. Then user utters the enrollment phrase and extracts voice characteristics for the user from the uttered enrollment phrase. The system generates a user profile, based on the voice characteristics, for generating random challenge sentences according to a grammar.
    • 本文公开了与说话者验证有关的系统,方法和非暂时的计算机可读存储介质。 在一个方面,系统从第二用户接收第一用户身份,并且基于身份访问语音特征。 该系统根据语音特征根据规则和/或语法随机生成挑战句,并提示第二用户说出挑战句。 系统验证第二用户是否是第一个用户,如果口头的挑战句子与语音特征相匹配。 在注册方面,系统构建了一个基于扬声器独特音素,音素集群和韵律,覆盖独特语音的最小阈值的注册短语。 然后用户发出注册短语,并从发出的注册短语中提取用户的语音特征。 该系统基于语音特征生成用户简档,用于根据语法产生随机挑战语句。