会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • High-Energy Detector
    • 高能检测仪
    • US20090026371A1
    • 2009-01-29
    • US12056655
    • 2008-03-27
    • Aleksey E. BolotnikovGiuseppe CamardaYonggang CuiRalph B. James
    • Aleksey E. BolotnikovGiuseppe CamardaYonggang CuiRalph B. James
    • G01T1/00B05D5/12
    • G01T1/241
    • The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.
    • 优选实施例涉及一种使用阳极,阴极和导电屏蔽电屏蔽的高能量检测器,以大幅度地减少或消除电非屏蔽区域。 阳极和阴极设置在检测器的相对端,并且导电屏蔽件基本上围绕检测器的纵向表面的至少一部分。 导电屏蔽件纵向延伸到检测器的阳极端并且基本上围绕检测器的至少一部分。 从阳极,阴极和导电屏蔽中的一个或多个读取的信号可用于确定由于高能粒子撞击检测器而释放的电子数。 可以实施校正技术来校正被捕获的释放的电子,以提高本文公开的高能量检测器的能量分辨率。
    • 5. 发明授权
    • High-energy detector
    • 高能探测器
    • US08063378B2
    • 2011-11-22
    • US12056655
    • 2008-03-27
    • Aleksey E. BolotnikovGiuseppe CamardaYonggang CuiRalph B. James
    • Aleksey E. BolotnikovGiuseppe CamardaYonggang CuiRalph B. James
    • G01T1/24G01T1/00
    • G01T1/241
    • The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.
    • 优选实施例涉及一种使用阳极,阴极和导电屏蔽电屏蔽的高能量检测器,以大幅度地减少或消除电非屏蔽区域。 阳极和阴极设置在检测器的相对端,并且导电屏蔽件基本上围绕检测器的纵向表面的至少一部分。 导电屏蔽件纵向延伸到检测器的阳极端并且基本上围绕检测器的至少一部分。 从阳极,阴极和导电屏蔽中的一个或多个读取的信号可用于确定由于高能粒子撞击检测器而释放的电子数。 可以实施校正技术来校正被捕获的释放的电子,以提高本文公开的高能量检测器的能量分辨率。
    • 9. 发明授权
    • Method for the depth corrected detection of ionizing events from a co-planar grids sensor
    • 用于从共面网格传感器深度校正检测电离事件的方法
    • US07531808B1
    • 2009-05-12
    • US11626919
    • 2007-01-25
    • Gianluigi De GeronimoAleksey E. BolotnikovGabriella Carini
    • Gianluigi De GeronimoAleksey E. BolotnikovGabriella Carini
    • H01L27/00H01L27/146
    • G01T1/241G01T1/247G01T1/2928
    • A method for the detection of ionizing events utilizing a co-planar grids sensor comprising a semiconductor substrate, cathode electrode, collecting grid and non-collecting grid. The semiconductor substrate is sensitive to ionizing radiation. A voltage less than 0 Volts is applied to the cathode electrode. A voltage greater than the voltage applied to the cathode is applied to the non-collecting grid. A voltage greater than the voltage applied to the non-collecting grid is applied to the collecting grid. The collecting grid and the non-collecting grid are summed and subtracted creating a sum and difference respectively. The difference and sum are divided creating a ratio. A gain coefficient factor for each depth (distance between the ionizing event and the collecting grid) is determined, whereby the difference between the collecting electrode and the non-collecting electrode multiplied by the corresponding gain coefficient is the depth corrected energy of an ionizing event. Therefore, the energy of each ionizing event is the difference between the collecting grid and the non-collecting grid multiplied by the corresponding gain coefficient. The depth of the ionizing event can also be determined from the ratio.
    • 一种利用包括半导体衬底,阴极电极,集电栅极和非集电栅极的共面栅极传感器来检测电离事件的方法。 半导体衬底对电离辐射敏感。 向阴极施加小于0伏特的电压。 将大于施加到阴极的电压的电压施加到非集电栅极。 将大于施加到非集电栅极的电压的电压施加到集电栅极。 收集网格和非收集网格相加和相减,分别创建和差异。 差异和总和分割创造一个比例。 确定每个深度(电离事件和收集网格之间的距离)的增益系数因子,由此收集电极和非集电极之间的差乘以相应的增益系数是电离事件的深度校正能量。 因此,每个电离事件的能量是收集网格和非收集网格之间的差值乘以相应的增益系数。 电离事件的深度也可以从该比例确定。