会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Image segmentation
    • 图像分割
    • US08160357B2
    • 2012-04-17
    • US12847372
    • 2010-07-30
    • Akinola AkinyemiIan PooleCostas PlakasJim Piper
    • Akinola AkinyemiIan PooleCostas PlakasJim Piper
    • G06K9/34
    • G06T7/11G06T2207/20128G06T2207/30004Y10S128/922Y10S128/923Y10S128/924
    • According to one embodiment there is provided a method of selecting a plurality of M atlases from among a larger group of N candidate atlases to form a multi-atlas data set to be used for computer automated segmentation of novel image data sets to mark objects of interest therein. A set of candidate atlases is used containing a reference image data set and segmentation data. Each of the candidate atlases is segmented against the others in a leave-one-out strategy, in which the candidate atlases are used as training data for each other. For each candidate atlas in turn, the following is carried out: registering; segmenting; computing an overlap; computing a value of the similarity measure for each of the registrations; and obtaining a set of regression parameters by performing a regression with the similarity measure being the independent variable and the overlap being the dependent variable. The M atlases are then selected from among all the N candidate atlases to form the multi-atlas data set, the M atlases being those atlases determined to collectively provide the highest aggregate overlap over all the training data image sets.
    • 根据一个实施例,提供了一种从较大组的N个候选地图集中选择多个M个遗传数据的方法,以形成用于新颖图像数据集的计算机自动分割以标记感兴趣的对象的多图谱数据集 其中。 使用一组候选地图集,其中包含参考图像数据集和分割数据。 候选地图集中的每一个都按照一个一个出发的策略与其他地图集分割,其中候选地图集被用作彼此的训练数据。 依次对每个候选图集进行以下操作:注册; 分段; 计算重叠; 计算每个注册的相似性度量的值; 以及通过使用所述相似性度量作为所述独立变量进行回归并且所述重叠是因变量来获得一组回归参数。 然后,从所有N个候选地图集中选出M个图集以形成多图集数据集,M个图集被确定为在所有训练数据图像集上统一提供最高的聚集重叠。
    • 2. 发明授权
    • Image segmentation
    • 图像分割
    • US08411950B2
    • 2013-04-02
    • US13407867
    • 2012-02-29
    • Akinola AkinyemiIan PooleCostas PlakasJim Piper
    • Akinola AkinyemiIan PooleCostas PlakasJim Piper
    • G06K9/34
    • G06T7/11G06T2207/20128G06T2207/30004Y10S128/922Y10S128/923Y10S128/924
    • According to one embodiment there is provided a method of selecting a plurality of M atlases from among a larger group of N candidate atlases to form a multi-atlas data set to be used for computer automated segmentation of novel image data sets to mark objects of interest therein. A set of candidate atlases is used containing a reference image data set and segmentation data. Each of the candidate atlases is segmented against the others in a leave-one-out strategy, in which the candidate atlases are used as training data for each other. For each candidate atlas in turn, the following is carried out: registering; segmenting; computing an overlap; computing a value of the similarity measure for each of the registrations; and obtaining a set of regression parameters by performing a regression with the similarity measure being the independent variable and the overlap being the dependent variable.
    • 根据一个实施例,提供了一种从较大组的N个候选地图集中选择多个M个遗传数据的方法,以形成用于新颖图像数据集的计算机自动分割以标记感兴趣的对象的多图谱数据集 其中。 使用一组候选地图集,其中包含参考图像数据集和分割数据。 候选地图集中的每一个都按照一个一个出发的策略与其他地图集分割,其中候选地图集被用作彼此的训练数据。 依次对每个候选图集进行以下操作:注册; 分段; 计算重叠; 计算每个注册的相似性度量的值; 以及通过使用所述相似性度量作为所述独立变量进行回归并且所述重叠是因变量来获得一组回归参数。
    • 3. 发明申请
    • IMAGE SEGMENTATION
    • 图像分割
    • US20120027272A1
    • 2012-02-02
    • US12847372
    • 2010-07-30
    • Akinola AkinyemiIan PooleCostas PlakasJim Piper
    • Akinola AkinyemiIan PooleCostas PlakasJim Piper
    • G06K9/34
    • G06T7/11G06T2207/20128G06T2207/30004Y10S128/922Y10S128/923Y10S128/924
    • According to one embodiment there is provided a method of selecting a plurality of M atlases from among a larger group of N candidate atlases to form a multi-atlas data set to be used for computer automated segmentation of novel image data sets to mark objects of interest therein. A set of candidate atlases is used containing a reference image data set and segmentation data. Each of the candidate atlases is segmented against the others in a leave-one-out strategy, in which the candidate atlases are used as training data for each other. For each candidate atlas in turn, the following is carried out: registering; segmenting; computing an overlap; computing a value of the similarity measure for each of the registrations; and obtaining a set of regression parameters by performing a regression with the similarity measure being the independent variable and the overlap being the dependent variable. The M atlases are then selected from among all the N candidate atlases to form the multi-atlas data set, the M atlases being those atlases determined to collectively provide the highest aggregate overlap over all the training data image sets.
    • 根据一个实施例,提供了一种从较大组的N个候选地图集中选择多个M个遗传数据的方法,以形成用于新颖图像数据集的计算机自动分割以标记感兴趣的对象的多图谱数据集 其中。 使用一组候选地图集,其中包含参考图像数据集和分割数据。 候选地图集中的每一个都按照一个一个出发的策略与其他地图集分割,其中候选地图集被用作彼此的训练数据。 依次对每个候选图集进行以下操作:注册; 分段; 计算重叠; 计算每个注册的相似性度量的值; 以及通过使用所述相似性度量作为所述独立变量进行回归并且所述重叠是因变量来获得一组回归参数。 然后,从所有N个候选地图集中选出M个图集以形成多图集数据集,M个图集被确定为在所有训练数据图像集上统一提供最高的聚集重叠。
    • 4. 发明申请
    • IMAGE SEGMENTATION
    • 图像分割
    • US20120177263A1
    • 2012-07-12
    • US13407867
    • 2012-02-29
    • Akinola AKINYEMIIan PooleCostas PlakasJim Piper
    • Akinola AKINYEMIIan PooleCostas PlakasJim Piper
    • G06K9/00
    • G06T7/11G06T2207/20128G06T2207/30004Y10S128/922Y10S128/923Y10S128/924
    • According to one embodiment there is provided a method of selecting a plurality of M atlases from among a larger group of N candidate atlases to form a multi-atlas data set to be used for computer automated segmentation of novel image data sets to mark objects of interest therein. A set of candidate atlases is used containing a reference image data set and segmentation data. Each of the candidate atlases is segmented against the others in a leave-one-out strategy, in which the candidate atlases are used as training data for each other. For each candidate atlas in turn, the following is carried out: registering; segmenting; computing an overlap; computing a value of the similarity measure for each of the registrations; and obtaining a set of regression parameters by performing a regression with the similarity measure being the independent variable and the overlap being the dependent variable.
    • 根据一个实施例,提供了一种从较大组的N个候选地图集中选择多个M个遗传数据的方法,以形成用于新颖图像数据集的计算机自动分割以标记感兴趣的对象的多图谱数据集 其中。 使用一组候选地图集,其中包含参考图像数据集和分割数据。 候选地图集中的每一个都按照一个一个出发的策略与其他地图集分割,其中候选地图集被用作彼此的训练数据。 依次对每个候选图集进行以下操作:注册; 分段; 计算重叠; 计算每个注册的相似性度量的值; 以及通过使用所述相似性度量作为所述独立变量进行回归并且所述重叠是因变量来获得一组回归参数。
    • 5. 发明授权
    • Method and apparatus for classification of coronary artery image data
    • 用于冠状动脉图像数据分类的方法和装置
    • US07941462B2
    • 2011-05-10
    • US12236789
    • 2008-09-24
    • Akinola AkinyemiSean MurphyIan Poole
    • Akinola AkinyemiSean MurphyIan Poole
    • G06F7/00G06F17/30
    • G06K9/469G06F19/00G06K9/6278G06K9/6282G06K2209/05G06T7/12G06T7/162G06T2207/30101G16H50/20G16H50/70
    • A polyline tree representation of a coronary artery tree imaged in a volume data set is obtained, and its topology is extracted to give a topological representation indicating the relative positions of vessels in the tree. The topological representation is compared with a set of topological rules to find possible anatomical classifications for each vessel, and a set of candidate labeled polyline trees is generated by labeling the polyline tree with labels showing each combination of possible anatomical classifications. Each candidate labeled tree is filtered according to a set of geometric rules pertaining to spatial characteristics of vessels in arterial trees, and any labeled tree not satisfying the geometric rules is rejected A figure of merit is calculated for each remaining candidate by comparing features of the vessels measured from the polyline tree and from the volume data set with features of correctly classified vessels in other data sets to determine the probable correctness of the labeling of each candidate, and the candidate with the best figure of merit is selected as showing the proper classification of the vessels.
    • 获得在体数据集中成像的冠状动脉树的折线图表示,并且提取其拓扑以给出指示树中血管的相对位置的拓扑表示。 将拓扑表示与一组拓扑规则进行比较,以找到每个血管的可能的解剖学分类,并且通过用显示可能的解剖学分类的每个组合的标记来标记折线树生成一组候选标记的折线树。 每个候选标签树根据与动脉树中血管的空间特征相关的一组几何规则进行过滤,并且任何不符合几何规则的标记树被拒绝通过比较血管的特征来计算每个剩余候选人的品质因数 从折线树和具有其他数据集中正确分类血管特征的体积数据集测量,以确定每个候选人的标签的可能正确性,并选择具有最佳品质因数的候选者,以显示适当的分类 船只。
    • 6. 发明申请
    • METHOD AND APPARATUS FOR CLASSIFICATION OF CORONARY ARTERY IMAGE DATA
    • 冠状动脉图像数据分类的方法和装置
    • US20100082692A1
    • 2010-04-01
    • US12236789
    • 2008-09-24
    • Akinola AkinyemiSean MurphyIan Poole
    • Akinola AkinyemiSean MurphyIan Poole
    • G06F17/30
    • G06K9/469G06F19/00G06K9/6278G06K9/6282G06K2209/05G06T7/12G06T7/162G06T2207/30101G16H50/20G16H50/70
    • A polyline tree representation of a coronary artery tree imaged in a volume data set is obtained, and its topology is extracted to give a topological representation indicating the relative positions of vessels in the tree. The topological representation is compared with a set of topological rules to find possible anatomical classifications for each vessel, and a set of candidate labeled polyline trees is generated by labeling the polyline tree with labels showing each combination of possible anatomical classifications. Each candidate labeled tree is filtered according to a set of geometric rules pertaining to spatial characteristics of vessels in arterial trees, and any labeled tree not satisfying the geometric rules is rejected A figure of merit is calculated for each remaining candidate by comparing features of the vessels measured from the polyline tree and from the volume data set with features of correctly classified vessels in other data sets to determine the probable correctness of the labeling of each candidate, and the candidate with the best figure of merit is selected as showing the proper classification of the vessels.
    • 获得在体数据集中成像的冠状动脉树的折线图表示,并且提取其拓扑以给出指示树中血管的相对位置的拓扑表示。 将拓扑表示与一组拓扑规则进行比较,以找到每个血管的可能的解剖学分类,并且通过用显示可能的解剖学分类的每个组合的标记来标记折线树生成一组候选标记的折线树。 每个候选标签树根据与动脉树中血管的空间特征相关的一组几何规则进行过滤,并且任何不符合几何规则的标记树被拒绝通过比较血管的特征来计算每个剩余候选人的品质因数 从折线树和具有其他数据集中正确分类血管特征的体积数据集测量,以确定每个候选人的标签的可能正确性,并选择具有最佳品质因数的候选者,以显示适当的分类 船只。
    • 7. 发明授权
    • Feature location method and system
    • 特征定位方法和系统
    • US08837791B2
    • 2014-09-16
    • US12976725
    • 2010-12-22
    • Costas PlakasIan Poole
    • Costas PlakasIan Poole
    • G06K9/00G06T7/00
    • G06T7/0038G06K2209/05G06T7/38G06T7/74G06T2207/10081G06T2207/30004
    • A method of locating anatomical features in a medical imaging dataset comprises obtaining a medical imaging measurement dataset that comprises image data for a subject body as a function of position; and performing a registration procedure that comprises:—providing a mapping between positions in the measurement dataset and positions in a reference dataset, wherein the reference dataset comprises reference image data for a reference body as a function of position, the reference dataset comprises at least one anatomical landmark, and the or each anatomical landmark is indicative of the position of a respective anatomical feature of the reference body; matching image data in the measurement dataset with image data for corresponding positions in the reference dataset, wherein the corresponding positions are determined according to the mapping; determining a measure of the match between the image data of the measurement dataset and the image data of the reference dataset; varying the mapping to improve the match between the image data of the measurement dataset and the image data of the reference dataset, thereby to obtain a registration mapping; and using the registration mapping to map the positions of the anatomical landmarks to positions in the measurement dataset, thereby to assign positions to anatomical features in the measurement dataset.
    • 一种在医学成像数据集中定位解剖特征的方法包括获得包括作为位置的函数的被摄体的图像数据的医学成像测量数据集; 并且执行注册过程,其包括:提供测量数据集中的位置和参考数据集中的位置之间的映射,其中所述参考数据集包括作为位置的函数的参考主体的参考图像数据,所述参考数据集包括至少一个 解剖标记,并且所述或每个解剖标记指示参考体的相应解剖特征的位置; 将测量数据集中的图像数据与参考数据集中的对应位置的图像数据进行匹配,其中根据映射确定相应的位置; 确定测量数据集的图像数据与参考数据集的图像数据之间的匹配的度量; 改变映射以改善测量数据集的图像数据与参考数据集的图像数据之间的匹配,从而获得注册映射; 并且使用所述配准映射将所述解剖学标记的位置映射到所述测量数据集中的位置,从而为所述测量数据集中的解剖特征分配位置。
    • 8. 发明授权
    • Processing of abdominal images
    • 腹部图像处理
    • US08644575B2
    • 2014-02-04
    • US13036414
    • 2011-02-28
    • Jim PiperIan Poole
    • Jim PiperIan Poole
    • G06K9/00
    • A61B6/507G06F19/00G06T7/30G06T2200/04G06T2207/10076G06T2207/10081G06T2207/30092
    • According to one embodiment there is provided a computer-automated image processing method applied to a four-dimensional (4D) image data set of a patient's abdomen, e.g. by dynamic contrast enhanced computer-assisted tomography (DCE-CT). One of the three-dimensional (3D) scan images is taken to as the reference volume and the others as target volumes. Before registration between the 3D scan images, the image data set is partitioned into an abdominal cavity domain, containing the organs inside the abdominal wall, and an abdominal wall domain including the abdominal wall and externally adjacent skeletal features, such as the spine and ribs. Registration is then carried out separately on the two domains to obtain two warp fields which are then merged into a 4D image data set of the whole volume for further use, which may be to carry out perfusion measurements, to display and to store the registered 4D image data set.
    • 根据一个实施例,提供了一种应用于患者腹部的四维(4D)图像数据集的计算机自动化图像处理方法,例如, 通过动态对比增强计算机辅助断层扫描(DCE-CT)。 将三维(3D)扫描图像中的一个作为参考体积,其余的作为目标体积。 在3D扫描图像之前,将图像数据组分割成腹腔结构域,其中包含腹壁内的器官,以及包括腹壁和外部骨骼特征(例如脊柱和肋骨)的腹壁结构域。 然后在两个域上单独进行登记,以获得两个经线域,然后将它们合并到整个体积的4D图像数据集中供进一步使用,这可以进行灌注测量,以显示和存储注册的4D 图像数据集。
    • 9. 发明授权
    • Image registration
    • 图像注册
    • US09053541B2
    • 2015-06-09
    • US13544192
    • 2012-07-09
    • Jim PiperSean MurphyIan PooleJian Song
    • Jim PiperSean MurphyIan PooleJian Song
    • G06K9/00G06T7/00
    • G06T7/0028G06T7/33G06T2207/30004
    • Certain embodiments provide a computer system operable to determine a registration mapping between a first medical image and a second medical image, the computer system comprising: a storage device for storing data representing the first medical image and the second medical image; and a processor unit operable to execute machine readable instructions to: (a) identify a plurality of elements in the first medical image; (b) determine a spatial mapping from each element in the first medical image to a corresponding element in the second medical image to provide a plurality of spatial mappings subject to a consistency constraint; and (c) determine a registration mapping between the first medical image and the second medical image based on the plurality of spatial mappings from the respective elements of the first medical image to the corresponding elements of the second medical image.
    • 某些实施例提供一种可操作以确定第一医学图像和第二医学图像之间的登记映射的计算机系统,所述计算机系统包括:存储装置,用于存储表示第一医学图像和第二医学图像的数据; 以及处理器单元,其可操作以执行机器可读指令以:(a)识别所述第一医学图像中的多个元素; (b)确定从所述第一医学图像中的每个元素到所述第二医学图像中的对应元件的空间映射,以提供经受一致性约束的多个空间映射; 以及(c)基于从第一医用图像的各个元件到第二医用图像的相应元件的多个空间映射,确定第一医用图像与第二医用图像之间的登记映射。
    • 10. 发明申请
    • IMAGE REGISTRATION
    • 图像注册
    • US20140010422A1
    • 2014-01-09
    • US13544192
    • 2012-07-09
    • Jim PiperSean MurphyIan PooleJian Song
    • Jim PiperSean MurphyIan PooleJian Song
    • G06K9/00
    • G06T7/0028G06T7/33G06T2207/30004
    • Certain embodiments provide a computer system operable to determine a registration mapping between a first medical image and a second medical image, the computer system comprising: a storage device for storing data representing the first medical image and the second medical image; and a processor unit operable to execute machine readable instructions to: (a) identify a plurality of elements in the first medical image; (b) determine a spatial mapping from each element in the first medical image to a corresponding element in the second medical image to provide a plurality of spatial mappings subject to a consistency constraint; and (c) determine a registration mapping between the first medical image and the second medical image based on the plurality of spatial mappings from the respective elements of the first medical image to the corresponding elements of the second medical image.
    • 某些实施例提供可操作以确定第一医学图像和第二医学图像之间的登记映射的计算机系统,所述计算机系统包括:存储装置,用于存储表示第一医学图像和第二医学图像的数据; 以及处理器单元,其可操作以执行机器可读指令以:(a)识别所述第一医学图像中的多个元素; (b)确定从所述第一医学图像中的每个元素到所述第二医学图像中的对应元件的空间映射,以提供经受一致性约束的多个空间映射; 以及(c)基于从第一医用图像的各个元件到第二医用图像的相应元件的多个空间映射,确定第一医用图像与第二医用图像之间的登记映射。