会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD AND MEASURING INSTRUMENT FOR MEASURING THE OXYGEN SATURATION IN THE BLOOD
    • 用于测量血液中氧气饱和度的方法和测量仪器
    • US20120302846A1
    • 2012-11-29
    • US13576389
    • 2011-01-28
    • Achim VolmerReinhold OrglmeisterEugen HoffmannDorothea Kolossa
    • Achim VolmerReinhold OrglmeisterEugen HoffmannDorothea Kolossa
    • A61B5/1455A61B5/0205
    • A61B5/14551A61B5/02416A61B5/7214G06K9/624
    • The invention relates inter alia to a method for measuring the oxygen saturation of the blood flowing in a peripheral human or animal body part (20), in which electromagnetic radiation (q1′(t), q2′(t)) having a first and a second wavelength is irradiated into the peripheral body part or irradiated through the peripheral body part, the reflected or transmitted radiation (x1′(t), x2′(t)) is measured to form two measurement signals (x1(t), x2(t)), and the oxygen saturation of the blood is determined by evaluating the two measurement signals.According to the invention, provision is made for a mathematical mixing model to be used to evaluate the two measurement signals and a statistical evaluation method to be applied to the two measurement signals, wherein, as a boundary condition, the statistical independence of a useful source signal and an interference source signal is assumed and the useful source signal and the two useful-signal-related filter functions are determined with the aid of the evaluation method and the oxygen saturation of the blood is determined using the three aforementioned signals.
    • 本发明尤其涉及用于测量在外周人或动物体部分(20)中流动的血液的氧饱和度的方法,其中电磁辐射(q1'(t),q2'(t))具有第一和 第二波长被照射到周边主体部分或通过周边部分照射,测量反射或透射的辐射(x1'(t),x2'(t))以形成两个测量信号(x1(t),x2 (t)),并且通过评估两个测量信号来确定血液的氧饱和度。 根据本发明,提供了用于评估两个测量信号的数学混合模型和要应用于两个测量信号的统计评估方法,其中作为边界条件,有用源的统计独立性 信号和干扰源信号,借助于评估方法确定有用的源信号和两个有用信号相关的滤波器功能,并且使用上述三个信号来确定血液的氧饱和度。
    • 2. 发明授权
    • Method and measuring instrument for measuring the oxygen saturation in the blood
    • 用于测量血液中氧饱和度的方法和测量仪器
    • US09320464B2
    • 2016-04-26
    • US13576389
    • 2011-01-28
    • Achim VolmerReinhold OrglmeisterEugen HoffmannDorothea Kolossa
    • Achim VolmerReinhold OrglmeisterEugen HoffmannDorothea Kolossa
    • A61B5/1455A61B5/024A61B5/00G06K9/62
    • A61B5/14551A61B5/02416A61B5/7214G06K9/624
    • The invention relates inter alia to a method for measuring the oxygen saturation of the blood flowing in a peripheral human or animal body part (20), in which electromagnetic radiation (q1′(t), q2′(t)) having a first and a second wavelength is irradiated into the peripheral body part or irradiated through the peripheral body part, the reflected or transmitted radiation (x1′(t), x2′(t)) is measured to form two measurement signals (x1(t), x2(t)), and the oxygen saturation of the blood is determined by evaluating the two measurement signals. According to the invention, provision is made for a mathematical mixing model to be used to evaluate the two measurement signals and a statistical evaluation method to be applied to the two measurement signals, wherein, as a boundary condition, the statistical independence of a useful source signal and an interference source signal is assumed and the useful source signal and the two useful-signal-related filter functions are determined with the aid of the evaluation method and the oxygen saturation of the blood is determined using the three aforementioned signals.
    • 本发明尤其涉及用于测量在外周人或动物体部分(20)中流动的血液的氧饱和度的方法,其中电磁辐射(q1'(t),q2'(t))具有第一和 第二波长被照射到周边主体部分或通过周边部分照射,测量反射或透射的辐射(x1'(t),x2'(t))以形成两个测量信号(x1(t),x2 (t)),并且通过评估两个测量信号来确定血液的氧饱和度。 根据本发明,提供了用于评估两个测量信号的数学混合模型和要应用于两个测量信号的统计评估方法,其中作为边界条件,有用源的统计独立性 信号和干扰源信号,借助于评估方法确定有用的源信号和两个有用信号相关的滤波器功能,并且使用上述三个信号来确定血液的氧饱和度。
    • 3. 发明授权
    • Method and apparatus of data reduction for digital audio signals and of
approximated recovery of the digital audio signals from reduced data
    • 减少数字音频信号的数据减少方法和装置,以及数字音频信号从减少的数据中大量恢复的方法和装置
    • US5199078A
    • 1993-03-30
    • US489261
    • 1990-03-06
    • Reinhold Orglmeister
    • Reinhold Orglmeister
    • H04B1/66H04H20/88
    • H04H20/88H04B1/667
    • For facilitating the transmission or recording of digital audio signals in a narrow band channel or at a reduced data rate without deterioration of audio quality detectable by the human ear, a digital audio signal is subdivided into overlapping time window segments and the segments are subjected to fast Fourier transformation, with generation of scaling factors. The spectral values resulting from the transformation are converted into separate magnitude and phase values, the former being logarithmically quantized and the latter being linearly quantized. The magnitude values corresponding to an upper portion of the spectrum are collected into groups of a size that increases towards the high frequency end of the spectrum and the magnitude values of each group are rms averaged, so that one value can serve in place of several magnitude values, thereby reducing the data to be transmitted or recorded. A final multiplexing of processed magnitude and phase values and of scaling factors precedes transmission or recording. For recovery of the digital audio signal there is corresponding preliminary demultiplexing operation. The magnitude values from the demultiplexer and the corresponding phase values are then used to provide spectral values each expressed in a real part and an imaginary part. Those outputs and the scaling factors are then subjected to inverse fast Fourier transformation (FFT), followed by inverse windowing, to produce an approximated audio digital signal which, when reproduced, cannot be distinguished by the human ear from a reproduction of the original digital audio signal.
    • 为了便于数字音频信号在窄带信道中传输或记录,或者以降低的数据速率进行数字音频信号的分解,数字音频信号被细分为重叠的时间窗口段,并且片段经受快速 傅里叶变换,产生比例因子。 由变换产生的频谱值被转换为单独的幅度和相位值,前者是对数量化的,后者被线性量化。 对应于频谱上部的幅度值被收集成朝向频谱的高频端增加的大小的组,并且每组的幅度值均方根平均,使得一个值可以代替数个量级 值,从而减少要发送或记录的数据。 处理的幅度和相位值和缩放因子的最终多路复用先于传输或记录。 为了恢复数字音频信号,有相应的初步解复用操作。 然后使用来自解复用器的幅度值和对应的相位值来提供每个在实部和虚部中表示的频谱值。 然后,将这些输出和缩放因子进行快速傅里叶逆变换(FFT),随后进行逆窗口化,以产生近似的音频数字信号,当再现时,不能通过人耳来区分原始数字音频的再现 信号。
    • 4. 发明授权
    • Signal evaluation method for detecting QRS complexes in electrocardiogram signals
    • 用于检测心电图信号中QRS复合物的信号评估方法
    • US06625484B2
    • 2003-09-23
    • US09803679
    • 2001-03-12
    • Bert-Uwe KöhlerReinhold Orglmeister
    • Bert-Uwe KöhlerReinhold Orglmeister
    • A61B5042
    • A61B5/0456A61B5/04014Y10S128/901
    • A signal evaluation method for detecting QRS complexes in electrocardiogram signals incorporates the following process steps: sampling of the signal (4) and conversion to discrete signal values (x(n)) in chronological order, determining the sign of each signal value (x(n)), continuous checking of the signs of consecutive signal values (x(n)) for the presence of a zero crossing between two consecutive signal values (x(n)), determining the number (D(n)) of zero crossings in a defined segment (N) of the consecutive signal values (x(n)), and comparing the determined number of zero crossings (D(n)) to a defined threshold value, wherein an undershoot of the threshold value signifying the presence of a QRS complex (5, 6, 7) in the defined segment of the signal curve (4).
    • 用于在心电图信号中检测QRS复合物的信号评估方法包括以下处理步骤:按时间顺序对信号(4)进行采样并转换为离散信号值(x(n)),确定每个信号值的符号(x( n)),对于两个连续信号值(x(n))之间存在过零点的连续信号值(x(n))的符号的连续检查,确定过零点数(D(n)) 在所述连续信号值(x(n))的定义的段(N)中,并将所确定的过零数量(D(n))与确定的阈值进行比较,其中阈值的下冲表示存在 QRS复合体(5,6,7)在信号曲线(4)的定义段中。
    • 5. 发明授权
    • Signal evaluation method for detecting QRS complexes in electrocardiogram signals
    • 用于检测心电图信号中QRS复合物的信号评估方法
    • US06937888B2
    • 2005-08-30
    • US10067391
    • 2002-02-07
    • Bert-Uwe KöhlerReinhold Orglmeister
    • Bert-Uwe KöhlerReinhold Orglmeister
    • A61B5/0456A61B5/04
    • A61B5/0456A61B5/04014
    • A signal evaluation method for detecting QRS complexes in electrocardiogram (ECG) signals comprises the following steps: sampling of the ECG signal (4) and conversion into discrete signal values (x(n)) in chronological order; comparing the signal values (xf(n), xfq(n)) to a threshold function (K(n)) adaptively determined therefrom; determining a frequency number (D(n)) within a defined segment of the consecutive signal values, by which signal values (xf(n), xfq(n)) preferably fall short of the threshold function (K(n)); comparing the determined frequency number (D(n)) to a defined threshold (Θ), wherein an undershoot of the threshold (Θ) is significant for apresence of a QRS complex (5, 6, 7) in the defined segment of the ECG signal (4).
    • 用于检测心电图(ECG)信号中的QRS复合物的信号评估方法包括以下步骤:按时间顺序对ECG信号(4)进行采样并转换为离散信号值(x(n)); 将信号值(x> f n(n),x x f q(n))与由其自适应地确定的阈值函数(K(n))进行比较; 确定所述连续信号值的定义段内的频率数(D(n)),通过所述频率数(x(n)),x(f)(n) )优选低于阈值函数(K(n)); 将所确定的频率数(D(n))与定义的阈值(Theta)进行比较,其中所述阈值(Theta)的下冲对于ECG的所定义的段中的QRS复数(5,6,7)的无序是重要的 信号(4)。