会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Streaming algorithms for robust, real-time detection of DDoS attacks
    • 用于强大,实时检测DDoS攻击的流式算法
    • US07669241B2
    • 2010-02-23
    • US10954901
    • 2004-09-30
    • Sumit GangulyMinos GarofalakisRajeev RastogiKrishan Sabnani
    • Sumit GangulyMinos GarofalakisRajeev RastogiKrishan Sabnani
    • G06F12/14
    • H04L29/06027H04L63/1458H04L65/607
    • A distinct-count estimate is obtained in a guaranteed small footprint using a two level hash, distinct count sketch. A first hash fills the first-level hash buckets with an exponentially decreasing number of data-elements. These are then uniformly hashed to an array of second-level-hash tables, and have an associated total-element counter and bit-location counters. These counters are used to identify singletons and so provide a distinct-sample and a distinct-count. An estimate of the total distinct-count is obtained by dividing by the distinct-count by the probability of mapping a data-element to that bucket. An estimate of the total distinct-source frequencies of destination address can be found in a similar fashion. By further associating the distinct-count sketch with a list of singletons, a total singleton count and a heap containing the destination addresses ordered by their distinct-source frequencies, a tracking distinct-count sketch may be formed that has considerably improved query time.
    • 使用两级散列,不同的计数草图在保证的小尺寸中获得不同的计数估计。 第一个散列填充了数据元素数量级数下降的第一级哈希桶。 然后将它们均匀地散列到二级哈希表的阵列,并具有关联的全元计数器和位位计数器。 这些计数器用于识别单例,因此提供了不同的样本和不同的数字。 通过将distinct-count除以将数据元素映射到该存储桶的概率,可以获得总区分计数的估计。 可以以类似的方式找到目的地地址的不同源频率的总体估计。 通过进一步将不同数量的草图与单例列表相关联,总共单例数和包含由其不同源频率排​​序的目的地地址的堆,可以形成具有显着改进的查询时间的跟踪不同计划草图。
    • 3. 发明授权
    • Tracking set-expression cardinalities over continuous update streams
    • 跟踪连续更新流中的设置表达式基数
    • US07596544B2
    • 2009-09-29
    • US11025355
    • 2004-12-29
    • Sumit GangulyMinos GarofalakisRajeev Rastogi
    • Sumit GangulyMinos GarofalakisRajeev Rastogi
    • G06F7/00
    • G06F17/30469Y10S707/99932
    • A method of estimating set-expression cardinalities over data streams with guaranteed small maintenance time per data-element update. The method only examines each data element once and uses a limited amount of memory. The time-efficient stream synopsis extends 2-level hash-sketches by randomly, but uniformly, pre-hashing data-elements prior to logarithmically hashing them to a first-level hash-table. This generates a set of independent 2-level hash-sketches. The set-union cardinality can be estimated by determining the smallest hash-bucket index j at which only a predetermined fraction of the b hash-buckets has a non-empty union |A∪B|. Once a set-union cardinality is estimated, general set-expression cardinalities may be estimated by counting witness elements for the set-expression, i.e., those first-level hash-buckets that are both a singleton for the set-expression and a set-union singleton. The set-expression cardinality is the set-union cardinality times the number of witness elements divided by the number of hash-buckets.
    • 一种估计数据流上的设置表达式基数的方法,每个数据元素更新保证小的维护时间。 该方法仅检查每个数据元素一次并使用有限的内存。 时间有效的流摘要通过随机,但统一地将数据元素进行对数散列之前的第一级散列表来扩展二级散列草图。 这产生一组独立的2级散列草图。 可以通过确定最小的哈希桶索引j来估计设置联合的基数,其中只有预定的b个哈希桶的一部分具有非空联合|A∪B|。 一旦估计了一个组合基数,就可以通过对集表达式的见证元素进行计数来估计一般的集合表示基数,即那些既是集合表达式的单例的一级哈希数据包, 联合单身人士 set-expression的基数是set-union的基数乘以证人的数量除以哈希桶的数量。
    • 4. 发明授权
    • Processing data-stream join aggregates using skimmed sketches
    • 使用撇去草图处理数据流连接聚合
    • US07483907B2
    • 2009-01-27
    • US11025578
    • 2004-12-29
    • Sumit GangulyMinos GarofalakisRajeev Rastogi
    • Sumit GangulyMinos GarofalakisRajeev Rastogi
    • G06F17/30
    • G06F17/30536G06F17/30516Y10S707/99932Y10S707/99936Y10S707/99942
    • A method of estimating an aggregate of a join over data-streams in real-time using skimmed sketches, that only examines each data element once and has a worst case space requirement of O(n2/J), where J is the size of the join and n is the number of data elements. The skimmed sketch is an atomic sketch, formed as the inner product of the data-stream frequency vector and a random binary variable, from which the frequency values that exceed a predetermined threshold have been skimmed off and placed in a dense frequency vector. The join size is estimated as the sum of the sub-joins of skimmed sketches and dense frequency vectors. The atomic sketches may be arranged in a hash structure so that processing a data element only requires updating a single sketch per hash table. This keeps the per-element overhead logarithmic in the domain and stream sizes.
    • 一种通过数据流实时估计聚合的方法,使用撇去草图,仅对每个数据元素进行一次检查,并具有O(n2 / J)的最差情况空间要求,其中J为 join,n是数据元素的数量。 撇去草图是一个原子草图,形成为数据流频率向量的内积和随机二进制变量,超过预定阈值的频率值已被从该数据流撇去并置于密集的频率向量中。 连接尺寸被估计为脱脂草图和密集频率矢量的子连接的总和。 原子草图可以以哈希结构排列,使得处理数据元素仅需要更新每个散列表的单个草图。 这将使每个元素的开销对数在域和流大小中保持一致。
    • 6. 发明申请
    • Streaming algorithms for robust, real-time detection of DDoS attacks
    • 用于强大,实时检测DDoS攻击的流式算法
    • US20060075489A1
    • 2006-04-06
    • US10954901
    • 2004-09-30
    • Sumit GangulyMinos GarofalakisRajeev RastogiKrishan Sabnani
    • Sumit GangulyMinos GarofalakisRajeev RastogiKrishan Sabnani
    • G06F12/14
    • H04L29/06027H04L63/1458H04L65/607
    • A distinct-count estimate is obtained in a guaranteed small footprint using a two level hash, distinct count sketch. A first hash fills the first-level hash buckets with an exponentially decreasing number of data-elements. These are then uniformly hashed to an array of second-level-hash tables, and have an associated total-element counter and bit-location counters. These counters are used to identify singletons and so provide a distinct-sample and a distinct-count. An estimate of the total distinct-count is obtained by dividing by the distinct-count by the probability of mapping a data-element to that bucket. An estimate of the total distinct-source frequencies of destination address can be found in a similar fashion. By further associating the distinct-count sketch with a list of singletons, a total singleton count and a heap containing the destination addresses ordered by their distinct-source frequencies, a tracking distinct-count sketch may be formed that has considerably improved query time.
    • 使用两级散列,不同的计数草图在保证的小尺寸中获得不同的计数估计。 第一个散列填充了数据元素数量级数下降的第一级哈希桶。 然后将它们均匀地散列到二级哈希表的阵列,并具有关联的全元计数器和位位计数器。 这些计数器用于识别单例,因此提供了不同的样本和不同的数字。 通过将distinct-count除以将数据元素映射到该存储桶的概率,可以获得总区分计数的估计。 可以以类似的方式找到目的地地址的不同源频率的总体估计。 通过进一步将不同数量的草图与单例列表相关联,总共单例数和包含由其不同源频率排​​序的目的地地址的堆,可以形成具有显着改进的查询时间的跟踪不同计划草图。
    • 8. 发明申请
    • Processing data-stream join aggregates using skimmed sketches
    • 使用撇去草图处理数据流连接聚合
    • US20060143170A1
    • 2006-06-29
    • US11025578
    • 2004-12-29
    • Sumit GangulyMinos GarofalakisRajeev Rastogi
    • Sumit GangulyMinos GarofalakisRajeev Rastogi
    • G06F17/30
    • G06F17/30536G06F17/30516Y10S707/99932Y10S707/99936Y10S707/99942
    • A method of estimating an aggregate of a join over data-streams in real-time using skimmed sketches, that only examines each data element once and has a worst case space requirement of O(n2/J), where J is the size of the join and n is the number of data elements. The skimmed sketch is an atomic sketch, formed as the inner product of the data-stream frequency vector and a random binary variable, from which the frequency values that exceed a predetermined threshold have been skimmed off and placed in a dense frequency vector. The join size is estimated as the sum of the sub-joins of skimmed sketches and dense frequency vectors. The atomic sketches may be arranged in a hash structure so that processing a data element only requires updating a single sketch per hash table. This keeps the per-element overhead logarithmic in the domain and stream sizes.
    • 一种通过数据流实时估计聚合的方法,该方法仅使用每个数据元素检查一次且具有最差情况空间要求为O(n2 / 2 / J)的撇去草图, ,其中J是连接的大小,n是数据元素的数量。 撇去草图是一个原子草图,形成为数据流频率向量的内积和随机二进制变量,超过预定阈值的频率值已被从该数据流撇去并置于密集的频率向量中。 连接尺寸被估计为脱脂草图和密集频率矢量的子连接的总和。 原子草图可以以哈希结构排列,使得处理数据元素仅需要更新每个散列表的单个草图。 这将使每个元素的开销对数在域和流大小中保持一致。