会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Method for detecting the position and orientation of holes using robotic vision system
    • 使用机器人视觉系统检测孔的位置和方向的方法
    • US20070050089A1
    • 2007-03-01
    • US11217735
    • 2005-09-01
    • Yunquan SunQing Tang
    • Yunquan SunQing Tang
    • G05B19/04
    • G05B19/401G05B2219/37199G05B2219/37555G05B2219/37572G05B2219/40613G05B2219/49113
    • This invention is about the method for detecting the position, and orientation of holes using a robotic vision system. In certain industrial applications, there are parts with many tiny or large holes or tunnels of various shapes, and the orientation and position of each of the holes need to be inspected automatically using non-contact measuring systems such as a vision system. The relative motion of the hole being measured and the measuring system can be realized by an industrial robot or other multiaxis CNC motion systems. The method in this invention includes the approaches and algorithms to detect the hole position, size, and orientation by using a vision system mounted on the robot arms. The hole orientation is determined based on the alignment of the vision system and the hole axis. The position of the hole is the intersection between the hole axis and the surface region around the hole opening.
    • 本发明涉及使用机器人视觉系统来检测孔的位置和取向的方法。 在某些工业应用中,有许多具有许多小孔或大孔或各种形状的隧道的部件,并且每个孔的取向和位置都需要使用诸如视觉系统之类的非接触测量系统进行自动检查。 所测量的孔的相对运动和测量系统可以由工业机器人或其他多轴CNC运动系统来实现。 本发明的方法包括通过使用安装在机器人臂上的视觉系统来检测孔位置,大小和取向的方法和算法。 基于视觉系统和孔轴的对准来确定孔取向。 孔的位置是孔轴与开孔周围的表面区域的交点。
    • 3. 发明申请
    • Calibration method for improving the accuracy of a robotic measuring system with joint configuration dependent performance
    • 用于提高具有联合配置依赖性能的机器人测量系统的精度的校准方法
    • US20070050090A1
    • 2007-03-01
    • US11217968
    • 2005-09-01
    • Yunquan SunQing Tang
    • Yunquan SunQing Tang
    • G06F19/00
    • B25J9/1692G05B2219/37008G05B2219/39045G05B2219/39057
    • Industrial robots have been widely used in industrial applications such as welding, and assembly. However, the application of the robots to precision manufacture is limited by their accuracy. As a highly non-linear system, the positioning accuracy of a robot varies with the configuration of the joints or the angular positions as well as translational positions of its joints. This results in a mechanical system of a low accuracy, but very high repeatability. This invention is about an innovative approach that will improve the accuracy of a robotic measuring system to the level of the repeatability of the robot. It is a calibration method for improving the accuracy of a robotic measuring system with joint configuration dependent performance. With such an increased measuring accuracy, the robotic measuring system can be used in many industrial applications requiring a robotic measuring system of high accuracy. One such an application is the automated measurement of the orientations and positions of many holes located on the surface of a part.
    • 工业机器人已广泛应用于工业应用,如焊接和组装。 然而,机器人对精密制造的应用受到其精度的限制。 作为高度非线性的系统,机器人的定位精度随着关节的构型或角位置以及关节的平移位置而变化。 这导致机械系统的精度低但重复性非常高。 本发明涉及一种将机器人测量系统的精度提高到机器人重复性水平的创新方法。 这是一种用于提高具有联合配置依赖性能的机器人测量系统的精度的校准方法。 凭借这种增加的测量精度,机器人测量系统可以用于需要高精度的机器人测量系统的许多工业应用中。 一种这样的应用是自动测量位于部件表面上的许多孔的取向和位置。
    • 4. 发明申请
    • Flexible CNC belt grinding machine
    • 柔性数控皮带磨床
    • US20070049171A1
    • 2007-03-01
    • US11209526
    • 2005-08-23
    • Yunquan SunQing Tang
    • Yunquan SunQing Tang
    • B24B49/00B24B29/00
    • B24B21/16B24B49/16
    • A belt grinding machine is disclosed that includes an automatic pressure and position control systems for robotic grinding and polishing applications. The machine will be combined with off-line programming package, capable of carrying out complicated operations that cannot be performed on traditional types of machines. The multiple contact wheels of the machine give the flexibility to accommodate complicated geometry of workpieces with a large material removal rate (MRR) and great surface finishes. The basic components of this belt grinding machine consists of the followings: a power source, a drive wheel or active wheel driven by a motor, multiple contact wheels; an idler for tensioning and tracking the belt, an active force control device to keep the constant pressure on the workpiece, a proper coated abrasive belt, and a dust collection system.
    • 公开了一种带式磨床,其包括用于机器人研磨和抛光应用的自动压力和位置控制系统。 该机将与离线编程包组合,能够执行不能在传统机型上执行的复杂操作。 机器的多个接触轮具有灵活性以适应具有大的材料去除速率(MRR)和大的表面光洁度的工件的复杂几何形状。 该皮带磨床的基本部件包括:电源,驱动轮或由电机驱动的主动轮,多个接触轮; 用于张紧和跟踪皮带的惰轮,用于保持工件上的恒定压力的主动力控制装置,适当的涂覆砂带和灰尘收集系统。
    • 5. 发明授权
    • Method for fine tuning of a robot program
    • 微调机器人程序的方法
    • US06836702B1
    • 2004-12-28
    • US10458785
    • 2003-06-11
    • Torgny BrogårdhHåkan BrantmarkZhongxue GanGregory RossanoXiongzi LiYunquan SunQuing Tang
    • Torgny BrogårdhHåkan BrantmarkZhongxue GanGregory RossanoXiongzi LiYunquan SunQuing Tang
    • G06F1900
    • B25J9/1664B23K26/04B23K26/0884B25J9/1692G05B19/4083G05B19/425G05B2219/36404G05B2219/36407
    • A method for fine tuning of a robot program for a robot application comprising an industrial robot, a tool and a work object to be processed by the tool along a path comprising a number of desired poses on the work object, the robot program comprises a number of program instructions containing programmed poses corresponding to the desired poses, wherein the method comprises: defining a fine tuning coordinate system Xft, Yft, Zft, selecting one of said programmed poses pi, calculating said selected pose in the fine tuning coordinate system, producing program instructions for said selected pose in the fine tuning coordinate system, running said one or more program instructions by the robot, determining the difference between the pose obtained after running the program instructions and the desired pose, adjusting the fine tuning coordinate system in dependence of said difference, producing program instructions for said selected pose in the adjusted fine tuning coordinate system Xft′, Yft′, Zft′.
    • 一种用于机器人应用的机器人程序的微调方法,所述机器人程序包括工业机器人,工具和工具,所述工具由所述工具沿着包括所述工件上的多个所需姿势的路径处理,所述机器人程序包括: 包含与期望姿势相对应的程序化姿势的程序指令,其中该方法包括:定义微调坐标系Xft,Yft,Zft,选择所述编程姿态pi中的一个,在微调坐标系中计算所述选定姿势,产生程序 用于在微调坐标系中的所述选定姿态的指令,由机器人运行所述一个或多个程序指令,确定在运行程序指令之后获得的姿态与所需姿势之间的差异,根据所述姿势调整微调坐标系 在调整的微调坐标系Xft',Yft'中产生用于所述选定姿态的程序指令, ,Zft'。
    • 8. 发明授权
    • Apparatus and method for lobing and thermal-damage control in shoe
centerless grinding
    • 在无心磨削中进行破碎和热损伤控制的装置和方法
    • US06148248A
    • 2000-11-14
    • US982733
    • 1997-12-02
    • Yunquan SunZhongxue Gan
    • Yunquan SunZhongxue Gan
    • B24B5/307B24B49/12B24B49/14G06F7/66
    • B24B49/14B24B49/12B24B5/307G05B2219/37426G05B2219/37563G05B2219/41115G05B2219/49319
    • A control system by which, the lobing and thermal-damage on a component surface will be eliminated and a component of a circular cross-section is capable of being ground with ultra-precision and high quality surface finish. The system includes (i) an automatic controlled supporting device, by which the periphery support of circular component of any size is auto-formed in a most stable work-holding condition; (ii) a flexible rear-shoe with active filtering mechanism, by which the high frequency lobing will be removed and the heat generated in the contact area between the workpiece and rear-shoe will be reduced by the self-lubrication of rear-shoe; (iii) an on-line vision-based temperature monitoring and control device, by which the overheat on the workpiece is controlled; (iv) an on-line phase precession lobing control algorithm, by which the lobing will be effectively suppressed in a rounding process.
    • 一种控制系统,通过该系统可以消除零件表面上的破裂和热损伤,并且圆形横截面的部件能够以超精密和高质量的表面光洁度进行研磨。 该系统包括(i)自动控制支撑装置,通过该自动控制支撑装置,任何尺寸的圆形部件的周边支撑在最稳定的工作保持状态下自动形成; (ii)具有主动过滤机构的柔性后鞋,通过该柔性后鞋可以去除高频波纹,并通过后鞋的自润滑来减少在工件和后靴之间的接触区域中产生的热量; (iii)在线视觉温度监测和控制装置,通过该装置控制工件上的过热; (iv)在线相位进动跳动控制算法,通过该算法可以在四舍入处理中有效地抑制波峰。