会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • MOTION CONTROL SYSTEM, MOTION CONTROL METHOD, AND MOTION CONTROL PROGRAM
    • 运动控制系统,运动控制方法和运动控制程序
    • US20080312772A1
    • 2008-12-18
    • US12137873
    • 2008-06-12
    • Tadaaki HasegawaYugo UedaSoshi IbaDarrin Bentivegna
    • Tadaaki HasegawaYugo UedaSoshi IbaDarrin Bentivegna
    • G05B19/00
    • G06N3/008G05B2219/40391
    • The present invention provides a motion control system control a motion of a second motion body by considering an environment which a human contacts and a motion mode appropriate to the environment, and an environment which a robot actually contacts. The motion mode is learned based on an idea that it is sufficient to learn only a feature part of the motion mode of the human without a necessity to learn the others. Moreover, based on an idea that it is sufficient to reproduce only the feature part of the motion mode of the human without a necessity to reproduce the others, the motion mode of the robot is controlled by using the model obtained from the learning result. Thereby, the motion mode of the robot is controlled by using the motion mode of the human as a prototype without restricting the motion mode thereof more than necessary.
    • 本发明提供一种运动控制系统,其通过考虑人体接触的环境和适合于环境的运动模式以及机器人实际接触的环境来控制第二运动体的运动。 基于这样的想法来学习运动模式,即仅仅学习人的运动模式的特征部分是足够的,而不需要学习其他动作模式。 此外,基于仅仅再现人的运动模式的特征部分而不需要再现其他的想法就足够了,通过使用从学习结果获得的模型来控制机器人的运动模式。 因此,通过使用人的运动模式作为原型来控制机器人的运动模式,而不限制其运动模式。
    • 2. 发明申请
    • REINFORCEMENT LEARNING APPARATUS, CONTROL APPARATUS, AND REINFORCEMENT LEARNING METHOD
    • 加强学习装置,控制装置和加固学习方法
    • US20120253514A1
    • 2012-10-04
    • US13432094
    • 2012-03-28
    • Norikazu SugimotoYugo UedaTadaaki HasegawaSoshi IbaKoji Akatsuka
    • Norikazu SugimotoYugo UedaTadaaki HasegawaSoshi IbaKoji Akatsuka
    • G05B19/04
    • G05B13/0265Y10S901/03
    • It is possible to perform robot motor learning in a quick and stable manner using a reinforcement learning apparatus including: a first-type environment parameter obtaining unit that obtains a value of one or more first-type environment parameters; a control parameter value calculation unit that calculates a value of one or more control parameters maximizing a reward by using the value of the one or more first-type environment parameters; a control parameter value output unit that outputs the value of the one or more control parameters to the control object; a second-type environment parameter obtaining unit that obtains a value of one or more second-type environment parameters; a virtual external force calculation unit that calculates the virtual external force by using the value of the one or more second-type environment parameters; and a virtual external force output unit that outputs the virtual external force to the control object.
    • 可以使用强化学习装置以快速且稳定的方式执行机器人电动机学习,包括:获得一个或多个第一类型环境参数的值的第一类型环境参数获取单元; 控制参数值计算单元,其通过使用所述一个或多个第一类型环境参数的值来计算使奖励最大化的一个或多个控制参数的值; 控制参数值输出单元,其将所述一个或多个控制参数的值输出到所述控制对象; 获取一个或多个第二类型环境参数的值的第二类型环境参数获取单元; 虚拟外力计算单元,其通过使用所述一个或多个第二类型环境参数的值来计算所述虚拟外力; 以及将虚拟外力输出到控制对象的虚拟外力输出单元。
    • 4. 发明授权
    • Behavior control apparatus and method
    • US07133855B2
    • 2006-11-07
    • US10411485
    • 2003-04-07
    • Yugo UedaHiroshi Tsujino
    • Yugo UedaHiroshi Tsujino
    • G06E1/00G06F15/18G06G7/00
    • G06N3/06G06N3/08
    • It is objective of the invention to provide a highly reliable control apparatus and method which reduces the amount of calculation required for both learning of an input/output relationship and actual control as well as prevent inappropriate outputs from being generated for inputs which have been never learned. According to one aspect of the invention, pairs of an input pattern vector for learning and a target output are distributed to a class based on the target output. Then, a correspondence between each element of the input pattern vector for learning and the target output is learned only in that class, and a distribution function is calculated for distributing a new input pattern vector for learning to that class. After the completion of this learning, the distribution function is used to determine which class a new input pattern vector detected by a sensor belongs to. Finally, an output is calculated according to the learning result of that class. Therefore, since the range of the outputs corresponding to the inputs may be limited, reliability of the control is improved.
    • 5. 发明授权
    • Reinforcement learning apparatus, control apparatus, and reinforcement learning method
    • 加强学习装置,控制装置和强化学习方法
    • US08886357B2
    • 2014-11-11
    • US13432094
    • 2012-03-28
    • Norikazu SugimotoYugo UedaTadaaki HasegawaSoshi IbaKoji Akatsuka
    • Norikazu SugimotoYugo UedaTadaaki HasegawaSoshi IbaKoji Akatsuka
    • G06F19/00G05B13/02
    • G05B13/0265Y10S901/03
    • It is possible to perform robot motor learning in a quick and stable manner using a reinforcement learning apparatus including: a first-type environment parameter obtaining unit that obtains a value of one or more first-type environment parameters; a control parameter value calculation unit that calculates a value of one or more control parameters maximizing a reward by using the value of the one or more first-type environment parameters; a control parameter value output unit that outputs the value of the one or more control parameters to the control object; a second-type environment parameter obtaining unit that obtains a value of one or more second-type environment parameters; a virtual external force calculation unit that calculates the virtual external force by using the value of the one or more second-type environment parameters; and a virtual external force output unit that outputs the virtual external force to the control object.
    • 可以使用强化学习装置以快速且稳定的方式执行机器人电动机学习,包括:获得一个或多个第一类型环境参数的值的第一类型环境参数获取单元; 控制参数值计算单元,其通过使用所述一个或多个第一类型环境参数的值来计算使奖励最大化的一个或多个控制参数的值; 控制参数值输出单元,其将所述一个或多个控制参数的值输出到所述控制对象; 获取一个或多个第二类型环境参数的值的第二类型环境参数获取单元; 虚拟外力计算单元,其通过使用所述一个或多个第二类型环境参数的值来计算所述虚拟外力; 以及将虚拟外力输出到控制对象的虚拟外力输出单元。
    • 6. 发明授权
    • Motion control system, motion control method, and motion control program
    • 运动控制系统,运动控制方法和运动控制程序
    • US08315740B2
    • 2012-11-20
    • US12137873
    • 2008-06-12
    • Tadaaki HasegawaYugo UedaSoshi IbaDarrin Bentivegna
    • Tadaaki HasegawaYugo UedaSoshi IbaDarrin Bentivegna
    • G05B19/00
    • G06N3/008G05B2219/40391
    • The present invention provides a motion control system to control a motion of a second motion body, by considering an environment which a human contacts and a motion mode appropriate to the environment, and an environment which a robot actually contacts. The motion mode is learned based on an idea that it is sufficient to learn only a feature part of the motion mode of the human without a necessity to learn the others. Moreover, based on an idea that it is sufficient to reproduce only the feature part of the motion mode of the human without a necessity to reproduce the others, the motion mode of the robot is controlled by using the model obtained from the learning result. Thereby, the motion mode of the robot is controlled by using the motion mode of the human as a prototype without restricting the motion mode thereof more than necessary.
    • 本发明提供了一种运动控制系统,其通过考虑人类接触的环境和适合于环境的运动模式以及机器人实际接触的环境来控制第二运动体的运动。 基于这样的想法来学习运动模式,即仅仅学习人的运动模式的特征部分是足够的,而不需要学习其他动作模式。 此外,基于仅仅再现人的运动模式的特征部分而不需要再现其他的想法就足够了,通过使用从学习结果获得的模型来控制机器人的运动模式。 因此,通过使用人的运动模式作为原型来控制机器人的运动模式,而不限制其运动模式。