会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Infrared sensor
    • 红外传感器
    • US08426864B2
    • 2013-04-23
    • US12998213
    • 2009-09-24
    • Koji TsujiYosuke HagiharaNaoki Ushiyama
    • Koji TsujiYosuke HagiharaNaoki Ushiyama
    • H01L29/76
    • H01L27/14692G01J5/02G01J5/0225G01J5/06G01J5/08G01J5/0846G01J5/12G01J5/20H01L27/14649H01L27/14669H01L2224/48091H01L2224/48137H01L2224/73265H01L2924/13091H01L2924/00014H01L2924/00
    • The infrared sensor (1) includes a base (10), and an infrared detection element (3) formed over a surface of the base (10). The infrared detection element (3) comprises an infrared absorption member (33) in the form of a thin film configured to absorb infrared, and a temperature detection member (30) configured to measure a temperature difference between the infrared absorption member (33) and the base (10). The temperature detection member (30) includes a p-type polysilicon layer (35) formed over the infrared absorption member (33) and the base (10), an n-type polysilicon layer (34) formed over the infrared absorption member (33) and the base (10) without contact with the p-type polysilicon layer (33), and a connection layer (36) configured to electrically connect the p-type polysilicon layer (35) to the n-type polysilicon layer (34). Each of the p-type polysilicon layer (35) and the n-type polysilicon layer (34) has an impurity concentration in a range of 1018 to 1020 cm−3. The p-type polysilicon layer (35) has its thickness of λ/4n1p, wherein λ denotes a center wavelength of the infrared to be detected by the infrared detection element (3), and n1p denotes a reflective index of the p-type polysilicon layer (35). The n-type polysilicon layer (34) has its thickness of λ/4n1n, wherein n1n denotes a reflective index of the n-type polysilicon layer (34).
    • 红外传感器(1)包括基座(10)和形成在基座(10)的表面上的红外线检测元件(3)。 红外线检测元件(3)包括被构造成吸收红外线的薄膜形式的红外线吸收构件(33),以及温度检测构件(30),其被配置为测量红外线吸收构件(33)和 基座(10)。 温度检测部件(30)包括在红外线吸收部件(33)和基体(10)上形成的p型多晶硅层(35),在红外线吸收部件(33)的上方形成有n型多晶硅层 )和与p型多晶硅层(33)不接触的基极(10),以及被配置为将p型多晶硅层(35)电连接到n型多晶硅层(34)的连接层(36) 。 p型多晶硅层(35)和n型多晶硅层(34)中的每一个的杂质浓度在1018〜1020cm -3的范围内。 p型多晶硅层(35)的厚度为λ/ 4n1p,其中λ表示红外线检测元件(3)要检测的红外线的中心波长,n1p表示p型多晶硅层的反射率 层(35)。 n型多晶硅层(34)的厚度为λ/ 4n1n,其中n1n表示n型多晶硅层(34)的反射率。
    • 2. 发明申请
    • Infrared sensor
    • 红外传感器
    • US20110175100A1
    • 2011-07-21
    • US12998213
    • 2009-09-24
    • Koji TsujiYosuke HagiharaNaoki Ushiyama
    • Koji TsujiYosuke HagiharaNaoki Ushiyama
    • H01L29/66
    • H01L27/14692G01J5/02G01J5/0225G01J5/06G01J5/08G01J5/0846G01J5/12G01J5/20H01L27/14649H01L27/14669H01L2224/48091H01L2224/48137H01L2224/73265H01L2924/13091H01L2924/00014H01L2924/00
    • The infrared sensor (1) includes a base (10), and an infrared detection element (3) formed over a surface of the base (10). The infrared detection element (3) comprises an infrared absorption member (33) in the form of a thin film configured to absorb infrared, and a temperature detection member (30) configured to measure a temperature difference between the infrared absorption member (33) and the base (10). The temperature detection member (30) includes a p-type polysilicon layer (35) formed over the infrared absorption member (33) and the base (10), an n-type polysilicon layer (34) formed over the infrared absorption member (33) and the base (10) without contact with the p-type polysilicon layer (33), and a connection layer (36) configured to electrically connect the p-type polysilicon layer (35) to the n-type polysilicon layer (34). Each of the p-type polysilicon layer (35) and the n-type polysilicon layer (34) has an impurity concentration in a range of 1018 to 1020 cm−3. The p-type polysilicon layer (35) has its thickness of λ/4n1p, wherein A denotes a center wavelength of the infrared to be detected by the infrared detection element (3), and n1p denotes a reflective index of the p-type polysilicon layer (35). The n-type polysilicon layer (34) has its thickness of λ/4n1n, wherein n1n denotes a reflective index of the n-type polysilicon layer (34).
    • 红外传感器(1)包括基座(10)和形成在基座(10)的表面上的红外线检测元件(3)。 红外线检测元件(3)包括被构造成吸收红外线的薄膜形式的红外线吸收构件(33),以及温度检测构件(30),其被配置为测量红外线吸收构件(33)和 基座(10)。 温度检测部件(30)包括在红外线吸收部件(33)和基体(10)上形成的p型多晶硅层(35),在红外线吸收部件(33)的上方形成有n型多晶硅层 )和与p型多晶硅层(33)不接触的基极(10),以及被配置为将p型多晶硅层(35)电连接到n型多晶硅层(34)的连接层(36) 。 p型多晶硅层(35)和n型多晶硅层(34)中的每一个的杂质浓度在1018〜1020cm -3的范围内。 p型多晶硅层(35)的厚度为λ/ 4n1p,其中A表示由红外线检测元件(3)检测的红外线的中心波长,n1p表示p型多晶硅层的反射率 层(35)。 n型多晶硅层(34)的厚度为λ/ 4n1n,n1n表示n型多晶硅层(34)的反射率。
    • 3. 发明授权
    • Light responsive semiconductor switch with shorted load protection
    • 具有短路负载保护的光响应半导体开关
    • US06339236B1
    • 2002-01-15
    • US09671434
    • 2000-09-27
    • Kazushi TomiiHideo NagahamaYosuke Hagihara
    • Kazushi TomiiHideo NagahamaYosuke Hagihara
    • H01L27148
    • H03K17/785H03K3/356H03K17/0822
    • An improved light responsive semiconductor switch with shorted load protection capable of successfully interrupting a load overcurrent. The switch is includes an output transistor which is triggered by a photovoltaic element to connect a load to a power source thereof, and an overcurrent sensor which provides an overcurrent signal upon seeing an overcurrent condition in the load. A shunt transistor is connected in series with a current limiting resistive element across the photovoltaic element to define a shunt path of flowing the current from the photovoltaic element through the current limiting resistive element away from the output transistor. A latch circuit is included to be energized by the photovoltaic element and to provide an interruption signal once the overcurrent signal is received and hold the interruption signal. The interruption signal turns on the shunt transistor so as to flow the current from the photovoltaic element through the shunt path, thereby turning off the output transistor for interruption of the overcurrent. The current limiting resistive element is connected in series with the shunt transistor to limit the current from the photovoltaic element when the shunt transistor is turned on, thereby providing a supply voltage from the photovoltaic element to the latch circuit. Thus, the latch circuit is enabled to keep providing the interruption signal for reliable interruption of the overcurrent.
    • 具有能够成功中断负载过电流的短路负载保护的改进的光响应半导体开关。 开关包括由光电元件触发以将负载连接到其电源的输出晶体管,以及在负载中看到过电流状况时提供过电流信号的过电流传感器。 分流晶体管与跨越光电元件的限流电阻元件串联连接,以限定使来自光电元件的电流流过限流电阻元件远离输出晶体管的分流路径。 锁存电路被包含以由光电元件激励,并且一旦接收到过电流信号并提供中断信号并保持中断信号。 中断信号使分流晶体管导通,以使来自光电元件的电流流过分流路径,从而关断输出晶体管以中断过电流。 限流电阻元件与分流晶体管串联连接,以在并联晶体管导通时限制来自光电元件的电流,从而提供从光电元件到锁存电路的电源电压。 因此,锁存电路能够保持提供中断信号以便可靠地中断过电流。
    • 4. 发明申请
    • Infrared Sensor
    • 红外线传感器
    • US20110175145A1
    • 2011-07-21
    • US12998204
    • 2009-09-24
    • Koji TsujiYosuke HagiharaNaoki Ushiyama
    • Koji TsujiYosuke HagiharaNaoki Ushiyama
    • H01L29/66H01L31/028
    • H01L27/14649G01J5/02G01J5/0225G01J5/06G01J5/08G01J5/0846G01J5/12G01J5/20H01L27/14669H01L27/14692H01L2224/05554H01L2224/48091H01L2224/48137H01L2224/49175H01L2224/73265H01L2924/13091H01L2924/16151H01L2924/16195H01L2924/00014H01L2924/00
    • The infrared sensor (1) includes a base (10), and an infrared detection element (3) formed over a surface of the base (10). The infrared detection element (3) includes an infrared absorption member (33) in the form of a thin film configured to absorb infrared, a temperature detection member (30) configured to measure a temperature difference between the infrared absorption member (33) and the base (10), and a safeguard film (39). The infrared element (3) is spaced from the surface of the base (10) for thermal insulation. The temperature detection member (30) includes a p-type polysilicon layer (35) formed over the infrared absorption member (33) and the base (10), an n-type polysilicon layer (34) formed over the infrared absorption member (33) and the base (10) without contact with the p-type polysilicon layer (35), and a connection layer (36) configured to electrically connect the p-type polysilicon layer (35) to the n-type polysilicon layer (34). The safeguard film (39) is a polysilicon layer formed on an infrared incident surface defined as an opposite surface of the infrared absorption member (33) from the base (10) to cover the infrared incident surface.
    • 红外传感器(1)包括基座(10)和形成在基座(10)的表面上的红外线检测元件(3)。 红外线检测元件(3)包括被构造成吸收红外线的薄膜形式的红外线吸收部件(33),配置为测量红外线吸收部件(33)与红外线吸收部件 基座(10)和保护膜(39)。 红外元件(3)与基座(10)的表面间隔开以进行绝热。 温度检测部件(30)包括在红外线吸收部件(33)和基体(10)上形成的p型多晶硅层(35),在红外线吸收部件(33)的上方形成有n型多晶硅层 )和不与p型多晶硅层(35)接触的基极(10),以及被配置为将p型多晶硅层(35)电连接到n型多晶硅层(34)的连接层(36) 。 保护膜(39)是形成在红外线入射面上的多晶硅层,该红外线入射面被限定为与基部(10)相对的红外线吸收部件(33)的与红外线入射面相反的面。