会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • MAGNETIZATION CONTROL METHOD, INFORMATION STORAGE METHOD, INFORMATION STORAGE ELEMENT, AND MAGNETIC FUNCTION ELEMENT
    • 磁化控制方法,信息存储方法,信息存储元件和磁功能元件
    • US20110049659A1
    • 2011-03-03
    • US12990524
    • 2009-02-27
    • Yoshishige SuzukiTakayuki NozakiTakuto MaruyamaYoichi Shiota
    • Yoshishige SuzukiTakayuki NozakiTakuto MaruyamaYoichi Shiota
    • H01L43/06H01F13/00
    • H01F10/3286B82Y25/00B82Y40/00G11C11/161H01F10/3254H01F41/302H01F41/307H01L43/08
    • The present invention provides a magnetization control method controlling, utilizing no current-induced magnetic field or spin transfer torque a magnetization direction with low power consumption, an information storage method, an information storage element, and a magnetic function element. The magnetization control method involves controlling a magnetization direction of a magnetic layer, and includes: forming a structure including (i) the magnetic layer which is an ultrathin film ferromagnetic layer having a film thickness of one or more atomic layers and of 2 nm or less, and (ii) an insulating layer provided on the ultrathin film ferromagnetic layer and working as a potential barrier; and controlling a magnetization direction of the ultrathin film ferromagnetic layer by applying either (i) a voltage to opposing electrodes sandwiching the structure and a base layer or (ii) an electric field to the structure to change magnetic anisotropy of the ultrathin film ferromagnetic layer. The magnetization control method further involves controlling a waveform of the applied voltage or the applied electric field to switch the magnetization direction.
    • 本发明提供一种控制利用低功耗的磁化方向的电流感应磁场或自旋转移转矩的磁化控制方法,信息存储方法,信息存储元件和磁功能元件。 磁化控制方法包括控制磁性层的磁化方向,并且包括:形成包括(i)具有一个或多个原子层的膜厚度和2nm以下的膜的超薄膜铁磁性层的磁性层的结构 ,和(ii)设置在超薄膜铁磁层上并用作势垒的绝缘层; 并且通过对(i)将夹在该结构和基底层的相对电极施加电压,或(ii)向该结构施加电场以改变该超薄膜铁磁层的磁各向异性来控制该超薄膜铁磁层的磁化方向。 磁化控制方法还包括控制所施加的电压或所施加的电场的波形以切换磁化方向。
    • 7. 发明申请
    • ELECTRIC FIELD FERROMAGNETIC RESONANCE EXCITATION METHOD AND MAGNETIC FUNCTION ELEMENT EMPLOYING SAME
    • 电磁共振激发方法和使用其的磁功能元件
    • US20150085569A1
    • 2015-03-26
    • US14240158
    • 2012-06-18
    • Takayuki NozakiYoshishige Suzuki
    • Takayuki NozakiYoshishige Suzuki
    • G11C11/16
    • G11C11/1675B82Y40/00G11B5/147G11C11/2275H01F10/3254H01F10/3286H01F10/329H01F41/303H01L29/66984H01L43/08H03B15/006
    • To realize an electric field-driven type ferromagnetic resonance excitation method of low power consumption using an electric field as drive power, and provide a spin wave signal generation element and a spin current signal generation element using the method, a logic element using the elements, and a magnetic function element such as a high-frequency detection element and a magnetic recording device using the method. A magnetic field having a specific magnetic field application angle and magnetic field strength is applied to a laminate structure in which an ultrathin ferromagnetic layer sufficiently thin so that an electric field shield effect by conduction electrons does not occur and a magnetic anisotropy control layer are directly stacked on each other and an insulation barrier layer and an electrode layer are arranged in order on an ultrathin ferromagnetic layer side. An electric field having a high-frequency component of a magnetic resonance frequency is then applied between the magnetic anisotropy control layer and the electrode layer, thereby efficiently exciting ferromagnetic resonance in the ultrathin ferromagnetic layer.
    • 为了实现使用电场作为驱动功率的低功耗的电场驱动型铁磁共振激励方法,并且使用该方法提供自旋波信号生成元件和自旋电流信号生成元件,使用这些元件的逻辑元件, 以及诸如高频检测元件的磁功能元件和使用该方法的磁记录装置。 将具有特定磁场施加角和磁场强度的磁场施加到其中极薄铁磁层足够薄以致不会发生通过传导电子的电场屏蔽效应并且磁各向异性控制层直接堆叠的层叠结构 并且绝缘阻挡层和电极层依次布置在超薄铁磁层一侧。 然后,在磁各向异性控制层和电极层之间施加具有磁共振频率的高频分量的电场,从而有效地激励超薄铁磁层中的铁磁共振。
    • 9. 发明授权
    • Electric field ferromagnetic resonance excitation method and magnetic function element employing same
    • 电场铁磁共振激励法和磁功能元件采用相同
    • US09460769B2
    • 2016-10-04
    • US14240158
    • 2012-06-18
    • Takayuki NozakiYoshishige Suzuki
    • Takayuki NozakiYoshishige Suzuki
    • G11B5/147G11C11/16H01L29/66H01L43/08H03B15/00H01F41/30B82Y40/00H01F10/32
    • G11C11/1675B82Y40/00G11B5/147G11C11/2275H01F10/3254H01F10/3286H01F10/329H01F41/303H01L29/66984H01L43/08H03B15/006
    • To realize an electric field-driven type ferromagnetic resonance excitation method of low power consumption using an electric field as drive power, and provide a spin wave signal generation element and a spin current signal generation element using the method, a logic element using the elements, and a magnetic function element such as a high-frequency detection element and a magnetic recording device using the method. A magnetic field having a specific magnetic field application angle and magnetic field strength is applied to a laminate structure in which an ultrathin ferromagnetic layer sufficiently thin so that an electric field shield effect by conduction electrons does not occur and a magnetic anisotropy control layer are directly stacked on each other and an insulation barrier layer and an electrode layer are arranged in order on an ultrathin ferromagnetic layer side. An electric field having a high-frequency component of a magnetic resonance frequency is then applied between the magnetic anisotropy control layer and the electrode layer, thereby efficiently exciting ferromagnetic resonance in the ultrathin ferromagnetic layer.
    • 为了实现使用电场作为驱动功率的低功耗的电场驱动型铁磁共振激励方法,并且使用该方法提供自旋波信号生成元件和自旋电流信号生成元件,使用这些元件的逻辑元件, 以及诸如高频检测元件的磁功能元件和使用该方法的磁记录装置。 将具有特定磁场施加角和磁场强度的磁场施加到其中极薄铁磁层足够薄以致不会发生通过传导电子的电场屏蔽效应并且磁各向异性控制层直接堆叠的层叠结构 并且绝缘阻挡层和电极层依次布置在超薄铁磁层一侧。 然后,在磁各向异性控制层和电极层之间施加具有磁共振频率的高频分量的电场,从而有效地激励超薄铁磁层中的铁磁共振。