会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Iris data extraction
    • 虹膜数据提取
    • US07970179B2
    • 2011-06-28
    • US11526096
    • 2006-09-25
    • Yasunari Tosa
    • Yasunari Tosa
    • G06K9/00G06K9/48A61B3/14
    • G06K9/00597G06K9/0061
    • A process for extracting iris data for biometric identification includes a thresholding method where the thresholds are selected according to a nonparametric approach that considers the grey scale and does not require classifying pixels as edge or non-edge pixels. An eye image is first acquired, where the eye image has component images including an iris image with an inner boundary and an outer boundary. The eye image has a distribution of grey levels. Component images, such as an iris image or a pupil image, from the eye image are segmented according to the distribution of grey levels. The inner boundary and outer boundary of the iris image are determined from the component images. The iris image within the inner boundary and outer boundary is processed for biometric identification. The component images may be segmented by creating an eye histogram of pixel intensities from the distribution of grey levels.
    • 用于提取用于生物特征识别的虹膜数据的过程包括阈值方法,其中根据考虑灰度级并且不需要将像素分类为边缘或非边缘像素的非参数方法来选择阈值。 首先获取眼睛图像,其中眼睛图像具有包括具有内边界和外边界的虹膜图像的分量图像。 眼睛图像具有灰度分布。 根据灰度级别的分布,将来自眼睛图像的分量图像(例如虹膜图像或瞳孔图像)分割。 虹膜图像的内边界和外边界由分量图像确定。 处理内边界和外边界内的虹膜图像进行生物识别。 可以通过从灰度级分布中创建像素强度的眼图直方图来分割分量图像。
    • 7. 发明授权
    • Iris data extraction
    • 虹膜数据提取
    • US08340364B2
    • 2012-12-25
    • US13096401
    • 2011-04-28
    • Yasunari Tosa
    • Yasunari Tosa
    • G06K9/00G06K9/62
    • G06K9/00597G06K9/0061
    • A process for extracting iris data for biometric identification includes a thresholding method where the thresholds are selected according to a nonparametric approach that considers the grey scale and does not require classifying pixels as edge or non-edge pixels. An eye image is first acquired, where the eye image has component images including an iris image with an inner boundary and an outer boundary. The eye image has a distribution of grey levels. Component images, such as an iris image or a pupil image, from the eye image are segmented according to the distribution of grey levels. The inner boundary and outer boundary of the iris image are determined from the component images. The iris image within the inner boundary and outer boundary is processed for biometric identification. The component images may be segmented by creating an eye histogram of pixel intensities from the distribution of grey levels.
    • 用于提取用于生物特征识别的虹膜数据的过程包括阈值方法,其中根据考虑灰度级并且不需要将像素分类为边缘或非边缘像素的非参数方法来选择阈值。 首先获取眼睛图像,其中眼睛图像具有包括具有内边界和外边界的虹膜图像的分量图像。 眼睛图像具有灰度分布。 根据灰度级别的分布,将来自眼睛图像的分量图像(例如虹膜图像或瞳孔图像)分割。 虹膜图像的内边界和外边界由分量图像确定。 处理内边界和外边界内的虹膜图像进行生物识别。 可以通过从灰度级分布中创建像素强度的眼图直方图来分割分量图像。
    • 10. 发明申请
    • Iris Data Extraction
    • 虹膜数据提取
    • US20110200235A1
    • 2011-08-18
    • US13096401
    • 2011-04-28
    • Yasunari TOSA
    • Yasunari TOSA
    • G06K9/00
    • G06K9/00597G06K9/0061
    • A process for extracting iris data for biometric identification includes a thresholding method where the thresholds are selected according to a nonparametric approach that considers the grey scale and does not require classifying pixels as edge or non-edge pixels. An eye image is first acquired, where the eye image has component images including an iris image with an inner boundary and an outer boundary. The eye image has a distribution of grey levels. Component images, such as an iris image or a pupil image, from the eye image are segmented according to the distribution of grey levels. The inner boundary and outer boundary of the iris image are determined from the component images. The iris image within the inner boundary and outer boundary is processed for biometric identification. The component images may be segmented by creating an eye histogram of pixel intensities from the distribution of grey levels.
    • 用于提取用于生物特征识别的虹膜数据的过程包括阈值方法,其中根据考虑灰度级并且不需要将像素分类为边缘或非边缘像素的非参数方法来选择阈值。 首先获取眼睛图像,其中眼睛图像具有包括具有内边界和外边界的虹膜图像的分量图像。 眼睛图像具有灰度分布。 根据灰度级别的分布,将来自眼睛图像的分量图像(例如虹膜图像或瞳孔图像)分割。 虹膜图像的内边界和外边界由分量图像确定。 处理内边界和外边界内的虹膜图像进行生物识别。 可以通过从灰度级分布中创建像素强度的眼图直方图来分割分量图像。