会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Representation and retrieval of images using content vectors derived from image information elements
    • 使用从图像信息元素导出的内容向量来表示和检索图像。
    • US06760714B1
    • 2004-07-06
    • US09675867
    • 2000-09-29
    • William R. CaidRobert Hecht-Neilsen
    • William R. CaidRobert Hecht-Neilsen
    • G06F1518
    • G06F17/30265G06F17/30256G06F17/3061G06K9/4623
    • Image features are generated by performing wavelet transformations at sample points on images stored in electronic form. Multiple wavelet transformations at a point are combined to form an image feature vector. A prototypical set of feature vectors, or atoms, is derived from the set of feature vectors to form an “atomic vocabulary.” The prototypical feature vectors are derived using a vector quantization method (e.g., using neural network self-organization techniques) in which a vector quantization network is also generated. The atomic vocabulary is used to define new images. Meaning is established between atoms in the atomic vocabulary. High-dimensional context vectors are assigned to each atom. The context vectors are then trained as a function of the proximity and co-occurrence of each atom to other atoms in the image. After training, the context vectors associated with the atoms that comprise an image are combined to form a summary vector for the image. Images are retrieved using a number of query methods (e.g., images, image portions, vocabulary atoms, index terms). The user's query is converted into a query context vector. A dot product is calculated between the query vector and the summary vectors to locate images having the closest meaning. The invention is also applicable to video or temporally related images, and can also be used in conjunction with other context vector data domains such as text or audio, thereby linking images to such data domains.
    • 通过在以电子形式存储的图像上的采样点执行小波变换来生成图像特征。 将点处的多个小波变换组合以形成图像特征向量。 特征向量或原子的原型集是从特征向量集合中导出的,以形成“原子词汇”。 使用其中也生成矢量量化网络的矢量量化方法(例如,使用神经网络自组织技术)导出原型特征向量。 原子词汇用于定义新图像。 在原子词汇中的原子之间建立意义。 高维上下文向量分配给每个原子。 然后将上下文矢量作为每个原子与图像中其他原子的邻近和共现的函数进行训练。 在训练之后,与构成图像的原子相关联的上下文向量被组合以形成图像的汇总向量。 使用许多查询方法(例如,图像,图像部分,词汇原子,索引项)来检索图像。 用户的查询被转换为查询上下文向量。 在查询向量和汇总向量之间计算点积,以定位具有最接近意义的图像。 本发明也适用于视频或时间相关的图像,并且还可以与诸如文本或音频的其他上下文矢量数据域一起使用,从而将图像链接到这样的数据域。
    • 8. 发明授权
    • System and method of context vector generation and retrieval
    • 上下文矢量生成和检索的系统和方法
    • US5619709A
    • 1997-04-08
    • US561167
    • 1995-11-21
    • William R. CaidPu Oing
    • William R. CaidPu Oing
    • G06F17/16G06F17/30
    • G06F17/3069G06F17/30265G06F17/30696Y10S707/99932Y10S707/99935
    • A system and method for generating context vectors for use in storage and retrieval of documents and other information items. Context vectors represent conceptual relationships among information items by quantitative means. A neural network operates on a training corpus of records to develop relationship-based context vectors based on word proximity and co-importance using a technique of "windowed co-occurrence". Relationships among context vectors are deterministic, so that a context vector set has one logical solution, although it may have a plurality of physical solutions. No human knowledge, thesaurus, synonym list, knowledge base, or conceptual hierarchy, is required. Summary vectors of records may be clustered to reduce searching time, by forming a tree of clustered nodes. Once the context vectors are determined, records may be retrieved using a query interface that allows a user to specify content terms, Boolean terms, and/or document feedback. The present invention further facilitates visualization of textual information by translating context vectors into visual and graphical representations. Thus, a user can explore visual representations of meaning, and can apply human visual pattern recognition skills to document searches.
    • 一种用于生成用于文件和其他信息项的存储和检索的上下文矢量的系统和方法。 上下文向量通过定量方式表示信息项之间的概念关系。 神经网络使用训练语料库来记录,以使用“窗口共现”技术基于词近似和共同重要性来开发基于关系的上下文向量。 上下文向量之间的关系是确定性的,因此上下文向量集具有一个逻辑解,尽管其可以具有多个物理解。 不需要人类知识,词库,同义词列表,知识库或概念层次结构。 可以通过形成聚类节点树来聚合记录的汇总向量以减少搜索时间。 一旦确定了上下文向量,就可以使用允许用户指定内容项,布尔项和/或文档反馈的查询界面来检索记录。 本发明通过将上下文矢量转换为视觉和图形表示来进一步促进文本信息的可视化。 因此,用户可以探索意义的视觉表示,并且可以应用人类视觉模式识别技能来记录搜索。
    • 10. 发明授权
    • Representation and retrieval of images using context vectors derived from image information elements
    • 使用从图像信息元素导出的上下文向量来表示和检索图像
    • US07072872B2
    • 2006-07-04
    • US10868538
    • 2004-06-14
    • William R. CaidRobert Hecht-Neilsen
    • William R. CaidRobert Hecht-Neilsen
    • G06F15/18
    • G06F17/30265G06F17/30256G06F17/3061G06K9/4623
    • Image features are generated by performing wavelet transformations at sample points on images stored in electronic form. Multiple wavelet transformations at a point are combined to form an image feature vector. A prototypical set of feature vectors, or atoms, is derived from the set of feature vectors to form an “atomic vocabulary.” The prototypical feature vectors are derived using a vector quantization method, e.g., using neural network self-organization techniques, in which a vector quantization network is also generated. The atomic vocabulary is used to define new images. Meaning is established between atoms in the atomic vocabulary. High-dimensional context vectors are assigned to each atom. The context vectors are then trained as a function of the proximity and co-occurrence of each atom to other atoms in the image. After training, the context vectors associated with the atoms that comprise an image are combined to form a summary vector for the image. Images are retrieved using a number of query methods, e.g., images, image portions, vocabulary atoms, index terms. The user's query is converted into a query context vector. A dot product is calculated between the query vector and the summary vectors to locate images having the closest meaning. The invention is also applicable to video or temporally related images, and can also be used in conjunction with other context vector data domains such as text or audio, thereby linking images to such data domains.
    • 通过在以电子形式存储的图像上的采样点处执行小波变换来生成图像特征。 将点处的多个小波变换组合以形成图像特征向量。 特征向量或原子的原型集是从特征向量集合中导出的,以形成“原子词汇”。 使用矢量量化方法导出原型特征向量,例如使用其中也产生矢量量化网络的神经网络自组织技术。 原子词汇用于定义新图像。 在原子词汇中的原子之间建立意义。 高维上下文向量分配给每个原子。 然后将上下文矢量作为每个原子与图像中其他原子的邻近和共现的函数进行训练。 在训练之后,与构成图像的原子相关联的上下文向量被组合以形成图像的汇总向量。 使用许多查询方法(例如,图像,图像部分,词汇原子,索引项)来检索图像。 用户的查询被转换为查询上下文向量。 在查询向量和汇总向量之间计算点积,以定位具有最接近意义的图像。 本发明也适用于视频或时间相关的图像,并且还可以与诸如文本或音频的其他上下文矢量数据域一起使用,从而将图像链接到这样的数据域。