会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Surface plasma discharge for controlling forebody vortex asymmetry
    • 用于控制前体涡流不对称的表面等离子体放电
    • US06796532B2
    • 2004-09-28
    • US10326751
    • 2002-12-20
    • Norman D. MalmuthAlexander FedorovVladimir ShalaevVladimir ZharovIvan ShalaevAnatoly MaslovVictor Soloviev
    • Norman D. MalmuthAlexander FedorovVladimir ShalaevVladimir ZharovIvan ShalaevAnatoly MaslovVictor Soloviev
    • B64C2100
    • B64C23/005B64C5/12B64C2230/12Y02T50/166
    • The present invention provides a system and method for rapidly and precisely controlling vortex symmetry or asymmetry on aircraft forebodies to avoid yaw departure or provide supplemental lateral control beyond that available from the vertical tail surfaces with much less power, obtrusion, weight and mechanical complexity than current techniques. This is accomplished with a plasma discharge to manipulate the boundary layer and the angular locations of its separation points in cross flow planes to control the symmetry or asymmetry of the vortex pattern. Pressure data is fed to a PID controller to calculate and drive voltage inputs to the plasma discharge elements, which provide the volumetric heating of the boundary layer on a time scale necessary to adapt to changing flight conditions and control the symmetry or asymmetry of the pressures and vortices. In the case of yaw departure avoidance, the PID controller controls the plasma to adjust the separation points to angular locations around the forebody that provide a robustly stable symmetric vortex pattern on a time scale that the asymmetries develop. In the case of lateral control, the PID controller controls the plasma to adjust the separation points to angular locations around the forebody that provide an asymmetric vortex pattern that produces the desired supplementary lateral force and rolling moment.
    • 本发明提供了一种用于快速且精确地控制飞行器前体的涡流对称性或不对称性的系统和方法,以避免偏航偏离或提供超过从垂直尾部表面获得的辅助侧向控制,其功率,重量,重量和机械复杂度低于当前 技术 这是通过等离子体放电来实现的,以操纵边界层及其分离点在横流平面中的角位置以控制涡流图案的对称性或不对称性。 压力数据被馈送到PID控制器以计算和驱动对等离子体放电元件的电压输入,这些等离子体放电元件在适应不断变化的飞行条件和控制压力的对称性或不对称性的时间尺度上提供边界层的体积加热, 旋涡 在偏航偏离避免的情况下,PID控制器控制等离子体以将分离点调整到围绕前体的角位置,从而在非对称性发展的时间尺度上提供鲁棒稳定的对称涡流模式。 在横向控制的情况下,PID控制器控制等离子体以将分离点调整到围绕前体的角位置,从而提供产生期望的辅助横向力和滚动力矩的不对称涡流模式。
    • 4. 发明授权
    • Plasmonic and/or microcavity enhanced optical protein sensing
    • 等离子体和/或微腔增强的光学蛋白质感测
    • US07298474B2
    • 2007-11-20
    • US11102346
    • 2005-04-08
    • Vladimir P. DrachevVladimir ShalaevDongmao ZhangDor Ben-Amotz
    • Vladimir P. DrachevVladimir ShalaevDongmao ZhangDor Ben-Amotz
    • G01J3/44
    • G01N21/658G01N15/1434G01N27/44721G01N30/74G01N33/54373G01N2030/027
    • Instruments for molecular detection at the nano-molar to femto-molar concentration level include a longitudinal capillary column (10) of known wall thickness and diameter. The column (10) contains a medium (24) including a target molecule (30) and a plurality of optically interactive dielectric beads (26) on the order of about 10−6 meters up to about 10−3 meters and/or metal nanoparticles (31) on the order of 1-500 nm. A flow inducer (34) causes longitudinal movement of the target molecule within the column (10). A laser (14) introduces energy laterally with respect to the column (10) at a wavelength and in a direction selected to have a resonant mode within the capillary column wall (12) and couple to the medium (24). A detector (40) is positioned to detect Raman scattering occurring along the column (10) due to the presence of the target molecule.
    • 在纳摩尔至毫摩尔浓度水平下用于分子检测的仪器包括具有已知壁厚和直径的纵向毛细管柱(10)。 柱(10)包含包含目标分子(30)和大约10 -6毫米至约10微米的多个光学交互的电介质珠(26)的介质(24) 和/或大约1-500nm的金属纳米粒子(31)。 流动诱导器(34)引起靶分子在柱(10)内的纵向运动。 激光器(14)相对于柱(10)在波长和选择为在毛细管柱壁(12)内具有共振模式并耦合到介质(24)的方向上横向引入能量。 定位探测器(40)以检测由于靶分子的存在而沿塔(10)发生的拉曼散射。