会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Systems and methods for parallel processing optimization for an evolutionary algorithm
    • 用于进化算法的并行处理优化的系统和方法
    • US08255344B2
    • 2012-08-28
    • US12550801
    • 2009-08-31
    • Matthew Phillip FerringerRonald Scott CliftonTimothy Guy Thompson
    • Matthew Phillip FerringerRonald Scott CliftonTimothy Guy Thompson
    • G06F15/18G06N3/00G06N3/12
    • G06N3/126G06N3/086
    • The systems and methods may include receiving an initial population of parent chromosome data structures, where each parent chromosome data structure provides a plurality of genes; selecting pairs of parent chromosome data structures; applying at least one evolutionary operator to the genes of the selected pairs to generate a plurality of child chromosome data structures; allocating, the generated plurality of child chromosome structures to a plurality slave processors, where each slave processor evaluates one or more of the plurality of child chromosome data structures and generates respective objective function values; receiving objective function values for a portion of the plurality of allocated child chromosome data structures; merging the parent chromosome data structures with the received portion of the child chromosome data structures for which objective function values have been received; and identifying a portion of the merged set of chromosome data structures as an elite set of chromosome data structures.
    • 系统和方法可以包括接收母体染色体数据结构的初始群体,其中每个亲本染色体数据结构提供多个基因; 选择母体染色体数据结构对; 将至少一个进化算子应用于所选对的基因以产生多个子染色体数据结构; 将所生成的多个子染色体结构分配给多个从属处理器,其中每个从属处理器对所述多个子染色体数据结构中的一个或多个进行评估并产生相应的目标函数值; 接收所述多个分配的子染色体数据结构的一部分的目标函数值; 将母体染色体数据结构与已经接收到目标函数值的子染色体数据结构的接收部分合并; 并且将染色体数据结构的合并集合的一部分识别为染色体数据结构的精英集合。
    • 3. 发明申请
    • SYSTEMS AND METHODS FOR GENERATING RANDOM FEASIBLE SOLUTIONS FOR AN EVOLUTIONARY PROCESS
    • 用于生成演化过程的随机可行解决方案的系统和方法
    • US20100292928A1
    • 2010-11-18
    • US12550843
    • 2009-08-31
    • Matthew Phillip FerringerTimothy Guy Thompson
    • Matthew Phillip FerringerTimothy Guy Thompson
    • G06F19/00
    • G06N3/126G06N3/086
    • Systems and methods may include identifying an input population of parent chromosome data structures, where each parent chromosome data structure provides a plurality of genes representative of variables in which associated values are permitted to evolve; selecting pairs of parent chromosome data structures from the input population of parent chromosome data structures; combining genes of each selected pair of parent chromosome data structures according to at least one evolutionary operator to generate a plurality of child chromosome data structures; evaluating the plurality of child chromosome data structures according to a plurality of constraint functions to generate a respective plurality of constraint function values for each child chromosome data structure, where the constraint functions define constraints on a feasible solution set; determining whether any of the plurality of child chromosome data structures are within the feasible solution set based upon the respective plurality of constraint violation function values.
    • 系统和方法可以包括识别母体染色体数据结构的输入群体,其中每个父染色体数据结构提供多个代表代表允许相关值进化的变量的基因; 从母体染色体数据结构的输入群体中选择一对母体染色体数据结构; 根据至少一个进化算子组合每个选择的一对母体染色体数据结构的基因以产生多个子染色体数据结构; 根据多个约束函数来评估所述多个子染色体数据结构,以针对每个子染色体数据结构生成相应的多个约束函数值,其中所述约束函数定义对可行解集合的约束; 基于相应的多个约束违反功能值来确定所述多个子染色体数据结构中的任何一个是否在所述可行解集中。
    • 4. 发明授权
    • Systems and methods for auto-adaptive control over converged results for multi-dimensional optimization
    • 用于多维优化的融合结果的自适应控制的系统和方法
    • US08862627B2
    • 2014-10-14
    • US13194424
    • 2011-07-29
    • Matthew Phillip FerringerTimothy Guy Thompson
    • Matthew Phillip FerringerTimothy Guy Thompson
    • G06N3/12G06F17/30
    • G06N3/126G06F17/30286
    • Systems and methods may include identifying an input population of parent epsilon chromosome data structures; combining genes of each selected pair of parent epsilon chromosome data structures according to at least one evolutionary operator to generate a plurality of child epsilon chromosome data structures, each child epsilon chromosome data structure providing one or more genes each having a respective candidate epsilon value representing a respective step size or spacing for the respective problem objective; and evaluating each of the plurality of child epsilon chromosome data structures according to one or more epsilon objective functions to generate respective epsilon objective function values for each child epsilon chromosome data structure, where each epsilon objective function is associated with a respective goal associated with at least one a priori criterion, where each respective epsilon objective function value indicates an extent to which each respective goal can be achieved.
    • 系统和方法可以包括识别亲本染色体数据结构的输入群体; 根据至少一个进化算子组合每个所选择的一对亲本染色体数据结构的基因以产生多个儿童epsilon染色体数据结构,每个儿童epsilon染色体数据结构提供一个或多个基因,每个基因各自具有表示一个 相应问题目标的相应步长或间距; 以及根据一个或多个ε目标函数评估所述多个儿童epsilon染色体数据结构中的每一个,以针对每个儿童epsilon染色体数据结构生成相应的ε目标函数值,其中每个epsilon目标函数与至少相关联的目标函数相关联 一个先验标准,其中每个相应的ε目标函数值指示可以实现每个相应目标的程度。
    • 5. 发明授权
    • Systems and methods for box fitness termination of a job of an evolutionary software program
    • 用于盒式适配终止演化软件程序的系统和方法
    • US08498952B2
    • 2013-07-30
    • US12550817
    • 2009-08-31
    • Matthew Phillip FerringerTimothy Guy Thompson
    • Matthew Phillip FerringerTimothy Guy Thompson
    • G06F15/18G06N3/12
    • G06N3/126G06N3/086
    • Systems and methods may include receiving a respective plurality of objective function values for each chromosome data structure of a population, where the respective plurality of objective function values are obtained based upon an evaluation of each chromosome data structure; mapping the respective objective function values to respective epsilon values, where the respective epsilon values define a respective address associated with the plurality of objective functions; and performing non-domination sorting of the population to generate a reduced population of chromosome data structures; and performing epsilon non-dominated sorting to identify an elite set of addresses, where the prior steps are performed for a current generation, where the elite set of addresses are compared to a prior elite set of addresses for a predetermined number of prior generations to determine one or more variance values, where the one or more variance values are utilized to determine whether a current job of an evolutionary algorithm is to be halted.
    • 系统和方法可以包括为群体的每个染色体数据结构接收相应的多个目标函数值,其中基于每个染色体数据结构的评估获得相应的多个目标函数值; 将各个目标函数值映射到相应的ε值,其中相应的ε值定义与多个目标函数相关联的相应地址; 并执行群体的非统治排序以产生减少的染色体数据结构群体; 并且执行epsilon非主导排序以识别精英集合的地址,其中对于当前一代执行先前步骤,其中将精英集合的地址与预定数量的前几代的先前精英地址集进行比较以确定 一个或多个方差值,其中利用一个或多个方差值来确定进化算法的当前任务是否被停止。
    • 6. 发明申请
    • SYSTEMS AND METHODS FOR A CORE MANAGEMENT SYSTEM FOR PARALLEL PROCESSING OF AN EVOLUTIONARY ALGORITHM
    • 用于并行处理演化算法的核心管理系统的系统和方法
    • US20100293313A1
    • 2010-11-18
    • US12550724
    • 2009-08-31
    • Matthew Phillip FerringerTimothy Guy ThompsonRonald Scott Clifton
    • Matthew Phillip FerringerTimothy Guy ThompsonRonald Scott Clifton
    • G06F13/00
    • G06N3/126G06N3/086
    • Systems and methods are provided for a core management system for parallel processing of an evolutionary algorithm. The systems and methods may include identifying, for a processing environment, a plurality of arriving processors available for utilization; configuring a first number of the plurality of arriving processors as master processors for the processing environment; configuring a respective second number of the plurality of arriving processors as slave processors, where each master processor is assigned one or more of the slave processors for the processing environment, where each master processor maintains timing data associated with available processing resources at the respective master processor, where each master processor is operative to calculate a respective target number of slaves based upon the respective timing data; and reconfiguring a current number of slave processors assigned to one or more respective master processors based upon the respective timing data calculated for the one or more respective master processors.
    • 为进化算法并行处理的核心管理系统提供了系统和方法。 系统和方法可以包括为处理环境识别可用于利用的多个到达处理器; 将所述多个到达处理器的第一数目配置为所述处理环境的主处理器; 将多个到达处理器的相应第二数目配置为从属处理器,其中每个主处理器被分配用于处理环境的一个或多个从属处理器,其中每个主处理器维护与相应主处理器处的可用处理资源相关联的定时数据 其中每个主处理器可操作以基于相应的定时数据计算相应的目标数量的从站; 以及基于为一个或多个相应主处理器计算的相应定时数据,重新配置分配给一个或多个相应主处理器的当前数量的从属处理器。
    • 7. 发明申请
    • SYSTEMS AND METHODS FOR PARALLEL PROCESSING OPTIMIZATION FOR AN EVOLUTIONARY ALGORITHM
    • 用于并行处理优化算法的系统和方法
    • US20100293119A1
    • 2010-11-18
    • US12550801
    • 2009-08-31
    • Matthew Phillip FerringerTimothy Guy ThompsonRonald Scott Clifton
    • Matthew Phillip FerringerTimothy Guy ThompsonRonald Scott Clifton
    • G06N3/12G06F15/80G06F9/00
    • G06N3/126G06N3/086
    • The systems and methods may include receiving an initial population of parent chromosome data structures, where each parent chromosome data structure provides a plurality of genes; selecting pairs of parent chromosome data structures; applying at least one evolutionary operator to the genes of the selected pairs to generate a plurality of child chromosome data structures; allocating, the generated plurality of child chromosome structures to a plurality slave processors, where each slave processor evaluates one or more of the plurality of child chromosome data structures and generates respective objective function values; receiving objective function values for a portion of the plurality of allocated child chromosome data structures; merging the parent chromosome data structures with the received portion of the child chromosome data structures for which objective function values have been received; and identifying a portion of the merged set of chromosome data structures as an elite set of chromosome data structures.
    • 系统和方法可以包括接收母体染色体数据结构的初始群体,其中每个亲本染色体数据结构提供多个基因; 选择母体染色体数据结构对; 将至少一个进化算子应用于所选对的基因以产生多个子染色体数据结构; 将所生成的多个子染色体结构分配给多个从属处理器,其中每个从属处理器对所述多个子染色体数据结构中的一个或多个进行评估并产生相应的目标函数值; 接收所述多个分配的子染色体数据结构的一部分的目标函数值; 将母体染色体数据结构与已经接收到目标函数值的子染色体数据结构的接收部分合并; 并且将染色体数据结构的合并集合的一部分识别为染色体数据结构的精英集合。
    • 9. 发明申请
    • SYSTEMS AND METHODS FOR PARALLEL PROCESSING WITH INFEASIBILITY CHECKING MECHANISM
    • 用于并行处理的系统和方法,具有检查机制的不确定性
    • US20100293121A1
    • 2010-11-18
    • US12550829
    • 2009-08-31
    • Matthew Phillip FerringerTimothy Guy Thompson
    • Matthew Phillip FerringerTimothy Guy Thompson
    • G06N3/12G06F15/18
    • G06N3/126G06N3/086
    • Systems and methods may include obtaining an input population of parent chromosome data structures, where each parent chromosome data structure provides having a plurality of genes representative of variables in which associated values are permitted to evolve; selecting pairs of parent chromosome data structures from the input population; allocating the selected pairs of parent chromosome data structures to respective ones of a plurality of slave processors, where each slave processor applies an evolutionary process to genes of the allocated pair to generate a plurality of child chromosome data structures; receiving a portion of the plurality of child chromosome data structures generated by the plurality of slave processors; merging the parent chromosome data structures with at least the received portion of the child chromosome data structures to generate a merged set of chromosome data structures; and identifying a portion of the merged set of chromosome data structures as an elite set of chromosome data structures.
    • 系统和方法可以包括获得母体染色体数据结构的输入群体,其中每个亲本染色体数据结构提供具有多个代表其中允许相关联的值进化的变量的基因; 从输入群体中选择一对母体染色体数据结构; 将所选择的母体染色体数据结构对分配给多个从属处理器中的相应的一个,其中每个从属处理器对所分配的对的基因应用进化过程以产生多个子染色体数据结构; 接收由所述多个从属处理器生成的所述多个子染色体数据结构的一部分; 将母体染色体数据结构与至少所接收的子染色体数据结构部分合并以产生合并的染色体数据结构集合; 并且将染色体数据结构的合并集合的一部分识别为染色体数据结构的精英集合。
    • 10. 发明授权
    • Systems and methods for a core management system for parallel processing of an evolutionary algorithm
    • 用于并行处理进化算法的核心管理系统的系统和方法
    • US08433662B2
    • 2013-04-30
    • US12550724
    • 2009-08-31
    • Matthew Phillip FerringerRonald Scott CliftonTimothy Guy Thompson
    • Matthew Phillip FerringerRonald Scott CliftonTimothy Guy Thompson
    • G06F15/18G06F15/00G06F15/76G06F15/16G06N3/00G06N3/12
    • G06N3/126G06N3/086
    • Systems and methods are provided for a core management system for parallel processing of an evolutionary algorithm. The systems and methods may include identifying, for a processing environment, a plurality of arriving processors available for utilization; configuring a first number of the plurality of arriving processors as master processors for the processing environment; configuring a respective second number of the plurality of arriving processors as slave processors, where each master processor is assigned one or more of the slave processors for the processing environment, where each master processor maintains timing data associated with available processing resources at the respective master processor, where each master processor is operative to calculate a respective target number of slaves based upon the respective timing data; and reconfiguring a current number of slave processors assigned to one or more respective master processors based upon the respective timing data calculated for the one or more respective master processors.
    • 为进化算法并行处理的核心管理系统提供了系统和方法。 系统和方法可以包括为处理环境识别可用于利用的多个到达处理器; 将所述多个到达处理器的第一数目配置为所述处理环境的主处理器; 将多个到达处理器的相应第二数目配置为从属处理器,其中每个主处理器被分配用于处理环境的一个或多个从属处理器,其中每个主处理器维护与相应主处理器处的可用处理资源相关联的定时数据 其中每个主处理器可操作以基于相应的定时数据计算相应的目标数量的从站; 以及基于为一个或多个相应主处理器计算的相应定时数据,重新配置分配给一个或多个相应主处理器的当前数量的从属处理器。