会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • GENERATING SHARP IMAGES, PANORAMAS, AND VIDEOS FROM MOTION-BLURRED VIDEOS
    • 从运动视频中产生夏普图像,全景照片和视频
    • US20110304687A1
    • 2011-12-15
    • US12815264
    • 2010-06-14
    • Neel Suresh JoshiSing Bing KangYunpeng LiSteven Maxwell Seitz
    • Neel Suresh JoshiSing Bing KangYunpeng LiSteven Maxwell Seitz
    • H04N5/225G06K9/40
    • H04N5/23238G06T5/003G06T2207/10016G06T2207/20201
    • A “Blur Remover” provides various techniques for constructing deblurred images from a sequence of motion-blurred images such as a video sequence of a scene. Significantly, this deblurring is accomplished without requiring specialized side information or camera setups. In fact, the Blur Remover receives sequential images, such as a typical video stream captured using conventional digital video capture devices, and directly processes those images to generate or construct deblurred images for use in a variety of applications. No other input beyond the video stream is required for a variety of the embodiments enabled by the Blur Remover. More specifically, the Blur Remover uses joint global motion estimation and multi-frame deblurring with optional automatic video “duty cycle” estimation to construct deblurred images from video sequences for use in a variety of applications. Further, the automatically estimated video duty cycle is also separately usable in a variety of applications.
    • “模糊去除”提供了用于从诸如场景的视频序列的运动模糊图像序列构建去模糊图像的各种技术。 重要的是,这种脱模是完成的,而不需要专门的信息或相机设置。 事实上,Blur Remover接收连续图像,例如使用常规数字视频捕获设备捕获的典型视频流,并直接处理这些图像以生成或构造用于各种应用的去模糊图像。 对于由Blur Remover启用的各种实施例,不需要视频流之外的其他输入。 更具体地,Blur Remover使用联合全局运动估计和多帧去模糊与可选的自动视频“占空比”估计来构建来自用于各种应用的视频序列的去模糊图像。 此外,自动估计的视频占空比也可以在各种应用中单独使用。
    • 8. 发明申请
    • NATURAL USER INTERFACES FOR MOBILE IMAGE VIEWING
    • 用于移动图像浏览的自然用户界面
    • US20120314899A1
    • 2012-12-13
    • US13159010
    • 2011-06-13
    • Michael F. CohenNeel Suresh Joshi
    • Michael F. CohenNeel Suresh Joshi
    • G06K9/00
    • G06F3/012G06F3/04815G06F2200/1637
    • The mobile image viewing technique described herein provides a hands-free interface for viewing large imagery (e.g., 360 degree panoramas, parallax image sequences, and long multi-perspective panoramas) on mobile devices. The technique controls the imagery displayed on a display of a mobile device by movement of the mobile device. The technique uses sensors to track the mobile device's orientation and position, and front facing camera to track the user's viewing distance and viewing angle. The technique adjusts the view of a rendered imagery on the mobile device's display according to the tracked data. In one embodiment the technique can employ a sensor fusion methodology that combines viewer tracking using a front facing camera with gyroscope data from the mobile device to produce a robust signal that defines the viewer's 3D position relative to the display.
    • 本文描述的移动图像观看技术提供了用于在移动设备上观看大图像(例如,360度全景,视差图像序列和长多透视全景)的免提界面。 该技术通过移动设备的移动来控制显示在移动设备的显示器上的图像。 该技术使用传感器跟踪移动设备的方向和位置,以及前置摄像头来跟踪用户的观看距离和视角。 该技术根据跟踪的数据调整移动设备显示器上渲染的图像的视图。 在一个实施例中,该技术可以采用传感器融合方法,其将使用前置摄像机的观看者跟踪与来自移动设备的陀螺仪数据相结合,以产生定义观看者相对于显示器的3D位置的鲁棒信号。
    • 10. 发明授权
    • Statistical tracking for global server load balancing
    • 全局服务器负载均衡统计跟踪
    • US08949850B2
    • 2015-02-03
    • US11429177
    • 2006-05-05
    • Prajakta Suresh JoshiSunanda Lakshmi Kommula
    • Prajakta Suresh JoshiSunanda Lakshmi Kommula
    • G06F9/46G06F15/173H04L29/12H04L29/08
    • H04L29/12066H04L29/12783H04L61/1511H04L61/35H04L67/1002H04L67/1008H04L67/101H04L67/1017H04L67/1021H04L67/1023
    • Server load-balancing operation-related data, such as data associated with a system configured for global server load balancing (GSLB) that orders IP addresses into a list based on a set of performance metrics, is tracked. Such operation-related data includes inbound source IP addresses (e.g., the address of the originator of a DNS request), the requested host and zone, identification of the selected “best” IP addresses resulting from application of a GSLB algorithm and the selection metric used to decide on an IP address as the “best” one. Furthermore, the data includes a count of the selected “best” IP addresses selected via application of the GSLB algorithm, and for each of these IP addresses, the list of deciding performance metrics, along with a count of the number of times each of these metrics in the list was used as a deciding factor in selection of this IP address as the best one. This tracking feature allows better understanding of GSLB policy decisions (such as those associated with performance, maintenance, and troubleshooting) and intelligent deployment of large-scale resilient GSLB networks.
    • 跟踪服务器负载均衡操作相关数据,例如与根据一组性能指标将IP地址排列到列表中的全局服务器负载平衡(GSLB)相关联的系统数据。 这样的操作相关数据包括入站源IP地址(例如,DNS请求的发起者的地址),所请求的主机和区域,从应用GSLB算法产生的所选择的“最佳”IP地址的标识和选择度量 用于决定IP地址为“最佳”。 此外,数据包括通过应用GSLB算法选择的所选择的“最佳”IP地址的计数,并且对于这些IP地址中的每一个,决定性能度量的列表以及每个这些IP地址的次数的计数 列表中的指标被用作选择该IP地址作为最佳选择的决定因素。 此跟踪功能可以更好地了解GSLB策略决策(例如与性能,维护和故障排除相关的策略)以及大规模弹性GSLB网络的智能部署。