会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • System and method for feature-rich continuous space language models
    • 功能丰富的连续空间语言模型的系统和方法
    • US09092425B2
    • 2015-07-28
    • US12963161
    • 2010-12-08
    • Piotr Wojciech MirowskiSrinivas BangaloreSuhrid BalakrishnanSumit Chopra
    • Piotr Wojciech MirowskiSrinivas BangaloreSuhrid BalakrishnanSumit Chopra
    • G06F17/27G06F17/28
    • G06F17/28
    • Disclosed herein are systems, methods, and non-transitory computer-readable storage media for predicting probabilities of words for a language model. An exemplary system configured to practice the method receives a sequence of words and external data associated with the sequence of words and maps the sequence of words to an X-dimensional vector, corresponding to a vocabulary size. Then the system processes each X-dimensional vector, based on the external data, to generate respective Y-dimensional vectors, wherein each Y-dimensional vector represents a dense continuous space, and outputs at least one next word predicted to follow the sequence of words based on the respective Y-dimensional vectors. The X-dimensional vector, which is a binary sparse representation, can be higher dimensional than the Y-dimensional vector, which is a dense continuous space. The external data can include part-of-speech tags, topic information, word similarity, word relationships, a particular topic, and succeeding parts of speech in a given history.
    • 这里公开了用于预测语言模型的单词概率的系统,方法和非暂时的计算机可读存储介质。 配置为实施该方法的示例性系统接收与该单词序列相关联的单词序列和外部数据序列,并将该单词序列映射到对应于词汇大小的X维向量。 然后系统根据外部数据对每个X维向量进行处理,以产生各自的Y维向量,其中每个Y维向量表示密集的连续空间,并且输出至少一个预测的下一个单词以跟随单词序列 基于相应的Y维向量。 作为二进制稀疏表示的X维向量可以比作为密集连续空间的Y维向量更高的维度。 外部数据可以包括在给定历史中的部分词汇标签,主题信息,单词相似性,单词关系,特定主题以及后续部分语音。
    • 5. 发明授权
    • System and method for automatically generating a dialog manager
    • 自动生成对话管理器的系统和方法
    • US08433578B2
    • 2013-04-30
    • US12627617
    • 2009-11-30
    • Jason WilliamsSuhrid BalakrishnanLihong Li
    • Jason WilliamsSuhrid BalakrishnanLihong Li
    • G10L21/00G10L11/00
    • G10L15/063G06F3/167H04M3/4936H04M2203/355
    • Disclosed herein are systems, methods, and computer-readable storage media for automatically generating a dialog manager for use in a spoken dialog system. A system practicing the method receives a set of user interactions having features, identifies an initial policy, evaluates all of the features in a linear evaluation step of the algorithm to identify a set of most important features, performs a cubic policy improvement step on the identified set of most important features, repeats the previous two steps one or more times, and generates a dialog manager for use in a spoken dialog system based on the resulting policy and/or set of most important features. Evaluating all of the features can include estimating a weight for each feature which indicates how much each feature contributes to at least one of the identified policies. The system can ignore features not in the set of most important features.
    • 这里公开了用于自动生成用于在口头对话系统中使用的对话管理器的系统,方法和计算机可读存储介质。 实施该方法的系统接收具有特征的一组用户交互,识别初始策略,评估算法的线性评估步骤中的所有特征以识别一组最重要的特征,对所识别的一个或多个特征进行立体策略改进步骤 一组最重要的特征,重复前一个步骤一次或多次,并且基于所得到的策略和/或一组最重要的特征生成用于在口头对话系统中的对话管理器。 评估所有特征可以包括估计每个特征的权重,其指示每个特征对至少一个所识别的策略贡献多少。 系统可以忽略不属于最重要功能集的功能。
    • 6. 发明申请
    • SYSTEM AND METHOD FOR FEATURE-RICH CONTINUOUS SPACE LANGUAGE MODELS
    • 特征丰富的连续空间语言模型的系统与方法
    • US20120150532A1
    • 2012-06-14
    • US12963161
    • 2010-12-08
    • Piotr Wojciech MirowskiSrinivas BangloreSuhrid BalakrishnanSumit Chopra
    • Piotr Wojciech MirowskiSrinivas BangloreSuhrid BalakrishnanSumit Chopra
    • G06F17/27
    • G06F17/28
    • Disclosed herein are systems, methods, and non-transitory computer-readable storage media for predicting probabilities of words for a language model. An exemplary system configured to practice the method receives a sequence of words and external data associated with the sequence of words and maps the sequence of words to an X-dimensional vector, corresponding to a vocabulary size. Then the system processes each X-dimensional vector, based on the external data, to generate respective Y-dimensional vectors, wherein each Y-dimensional vector represents a dense continuous space, and outputs at least one next word predicted to follow the sequence of words based on the respective Y-dimensional vectors. The X-dimensional vector, which is a binary sparse representation, can be higher dimensional than the Y-dimensional vector, which is a dense continuous space. The external data can include part-of-speech tags, topic information, word similarity, word relationships, a particular topic, and succeeding parts of speech in a given history.
    • 这里公开了用于预测语言模型的单词概率的系统,方法和非暂时的计算机可读存储介质。 配置为实施该方法的示例性系统接收与该单词序列相关联的单词序列和外部数据序列,并将该单词序列映射到对应于词汇大小的X维向量。 然后系统根据外部数据对每个X维向量进行处理,以产生各自的Y维向量,其中每个Y维向量表示密集的连续空间,并且输出至少一个预测的下一个单词以跟随单词序列 基于相应的Y维向量。 作为二进制稀疏表示的X维向量可以比作为密集连续空间的Y维向量更高的维度。 外部数据可以包括在给定历史中的部分词汇标签,主题信息,单词相似性,单词关系,特定主题以及后续部分语音。
    • 7. 发明申请
    • SYSTEM AND METHOD FOR AUTOMATICALLY GENERATING A DIALOG MANAGER
    • 用于自动生成对话管理器的系统和方法
    • US20110131048A1
    • 2011-06-02
    • US12627617
    • 2009-11-30
    • Jason WilliamsSuhrid BalakrishnanLihong Li
    • Jason WilliamsSuhrid BalakrishnanLihong Li
    • G10L21/00
    • G10L15/063G06F3/167H04M3/4936H04M2203/355
    • Disclosed herein are systems, methods, and computer-readable storage media for automatically generating a dialog manager for use in a spoken dialog system. A system practicing the method receives a set of user interactions having features, identifies an initial policy, evaluates all of the features in a linear evaluation step of the algorithm to identify a set of most important features, performs a cubic policy improvement step on the identified set of most important features, repeats the previous two steps one or more times, and generates a dialog manager for use in a spoken dialog system based on the resulting policy and/or set of most important features. Evaluating all of the features can include estimating a weight for each feature which indicates how much each feature contributes to at least one of the identified policies. The system can ignore features not in the set of most important features.
    • 这里公开了用于自动生成用于在口头对话系统中使用的对话管理器的系统,方法和计算机可读存储介质。 实施该方法的系统接收具有特征的一组用户交互,识别初始策略,评估算法的线性评估步骤中的所有特征以识别一组最重要的特征,对所识别的一个或多个特征进行立体策略改进步骤 一组最重要的特征,重复前一个步骤一次或多次,并且基于所得到的策略和/或一组最重要的特征生成用于在口头对话系统中的对话管理器。 评估所有特征可以包括估计每个特征的权重,其指示每个特征对至少一个所识别的策略贡献多少。 系统可以忽略不属于最重要功能集的功能。
    • 8. 发明申请
    • SYSTEM AND METHOD FOR ESTIMATING THE RELIABILITY OF ALTERNATE SPEECH RECOGNITION HYPOTHESES IN REAL TIME
    • 实时评估替代语音识别假设的可靠性的系统和方法
    • US20110099012A1
    • 2011-04-28
    • US12604650
    • 2009-10-23
    • Jason WILLIAMSSuhrid BALAKRISHNAN
    • Jason WILLIAMSSuhrid BALAKRISHNAN
    • G10L15/00
    • G10L15/01G10L15/04G10L15/08G10L15/083G10L15/14G10L15/22G10L15/28
    • Disclosed herein are systems, methods, and computer-readable storage media for estimating reliability of alternate speech recognition hypotheses. A system configured to practice the method receives an N-best list of speech recognition hypotheses and features describing the N-best list, determines a first probability of correctness for each hypothesis in the N-best list based on the received features, determines a second probability that the N-best list does not contain a correct hypothesis, and uses the first probability and the second probability in a spoken dialog. The features can describe properties of at least one of a lattice, a word confusion network, and a garbage model. In one aspect, the N-best lists are not reordered according to reranking scores. The determination of the first probability of correctness can include a first stage of training a probabilistic model and a second stage of distributing mass over items in a tail of the N-best list.
    • 这里公开了用于估计替代语音识别假设的可靠性的系统,方法和计算机可读存储介质。 配置为实施该方法的系统接收描述N最佳列表的语音识别假设和特征的N最佳列表,基于接收的特征确定N最佳列表中的每个假设的第一概率的正确性,确定第二 N最佳列表不包含正确假设的概率,并且在口头对话中使用第一概率和第二概率。 特征可以描述网格,词混淆网络和垃圾模型中的至少一个的属性。 在一方面,N个最佳列表根据排名得分不重新排列。 确定正确性的第一个概率可以包括训练概率模型的第一阶段和在N最佳列表的尾部中的项目分发质量的第二阶段。