会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Pipeline architecture for analyzing multiple video streams
    • 用于分析多个视频流的管道架构
    • US07697026B2
    • 2010-04-13
    • US10965687
    • 2004-10-13
    • Robert P. ValloneJ. Andrew FreemanStephen G. Russell
    • Robert P. ValloneJ. Andrew FreemanStephen G. Russell
    • H04N7/12
    • G06K9/00288G06K9/00268G06K9/00711G06K9/00771H04N5/77H04N5/781H04N7/181H04N21/44008
    • A pipeline architecture for analyzing multiple streams of video is embodied, in part, in a layer of application program interfaces (APIs) to each stage of processing. Buffer queuing is used between some stages, which helps moderate the load on the CPU(s). Through the layer of APIs, innumerable video analysis applications can access and analyze video data flowing through the pipeline, and can annotate portions of the video data (e.g., frames and groups of frames), based on the analyses performed, with information that describes the frame or group. These annotated frames and groups flow through the pipeline to subsequent stages of processing, at which increasingly complex analyses can be performed. At each stage, portions of the video data that are of little or no interest are removed from the video data. Ultimately, “events” are constructed and stored in a database, from which cross-event and historical analyses may be performed and associations with, and among, events may be made.
    • 用于分析多个视频流的流水线架构部分地体现在每个处理阶段的应用程序接口(API)层中。 在一些阶段之间使用缓冲区排队,这有助于缓和CPU上的负载。 通过API层,无数的视频分析应用程序可以访问和分析流经流水线的视频数据,并且可以基于所执行的分析来注释视频数据的一部分(例如,帧和帧组),其中描述 框架或组。 这些注释的帧和组流经管线到处理的后续阶段,在该阶段可以执行越来越复杂的分析。 在每个阶段,从视频数据中删除少量或不感兴趣的视频数据的部分。 最终,“事件”被构建并存储在数据库中,可以从该数据库中进行交叉事件和历史分析,并且可以进行与事件的关联以及事件之间的关联。
    • 6. 发明授权
    • Event generation and camera cluster analysis of multiple video streams in a pipeline architecture
    • 在流水线架构中的多个视频流的事件生成和相机聚类分析
    • US07667732B1
    • 2010-02-23
    • US10965676
    • 2004-10-13
    • J. Andrew FreemanRobert P. ValloneStephen G. RussellChristian PappasStephen D. FleischerGordon T. Haupt
    • J. Andrew FreemanRobert P. ValloneStephen G. RussellChristian PappasStephen D. FleischerGordon T. Haupt
    • H04N7/18
    • G06K9/00973G06K9/00711G08B13/19671
    • A pipeline architecture for analyzing multiple streams of video is embodied, in part, in a layer of application program interfaces (APIs) to each stage of processing. Buffer queuing is used between some stages, which helps moderate the load on the CPU(s). Through the layer of APIs, innumerable video analysis applications can access and analyze video data flowing through the pipeline, and can annotate portions of the video data (e.g., frames and groups of frames), based on the analyses performed, with information that describes the frame or group. These annotated frames and groups flow through the pipeline to subsequent stages of processing, at which increasingly complex analyses can be performed. At each stage, portions of the video data that are of little or no interest are removed from the video data. Ultimately, “events” are constructed and stored in a database, from which cross-event and historical analyses may be performed and associations with, and among, events may be made.
    • 用于分析多个视频流的流水线架构部分地体现在每个处理阶段的应用程序接口(API)层中。 在一些阶段之间使用缓冲区排队,这有助于缓和CPU上的负载。 通过API层,无数的视频分析应用程序可以访问和分析流经流水线的视频数据,并且可以基于所执行的分析来注释视频数据的一部分(例如,帧和帧组),其中描述 框架或组。 这些注释的帧和组流经管线到处理的后续阶段,在该阶段可以执行越来越复杂的分析。 在每个阶段,从视频数据中删除少量或不感兴趣的视频数据的部分。 最终,“事件”被构建并存储在数据库中,可以从该数据库中进行交叉事件和历史分析,并且可以进行与事件的关联以及事件之间的关联。
    • 7. 发明授权
    • Feed-customized processing of multiple video streams in a pipeline architecture
    • 在流水线架构中对多个视频流进行自定义处理
    • US07663661B2
    • 2010-02-16
    • US10964977
    • 2004-10-13
    • Robert P. ValloneJ. Andrew FreemanStephen G. RussellThomas W. KirkmanStephen D. FleischerGordon T. Haupt
    • Robert P. ValloneJ. Andrew FreemanStephen G. RussellThomas W. KirkmanStephen D. FleischerGordon T. Haupt
    • H04N7/18
    • H04N7/181G06K9/00711G06K9/00986
    • A pipeline architecture for analyzing multiple streams of video is embodied, in part, in a layer of application program interfaces (APIs) to each stage of processing. Buffer queuing is used between some stages, which helps moderate the load on the CPU(s). Through the layer of APIs, innumerable video analysis applications can access and analyze video data flowing through the pipeline, and can annotate portions of the video data (e.g., frames and groups of frames), based on the analyses performed, with information that describes the frame or group. These annotated frames and groups flow through the pipeline to subsequent stages of processing, at which increasingly complex analyses can be performed. At each stage, portions of the video data that are of little or no interest are removed from the video data. Ultimately, “events” are constructed and stored in a database, from which cross-event and historical analyses may be performed and associations with, and among, events may be made.
    • 用于分析多个视频流的流水线架构部分地体现在每个处理阶段的应用程序接口(API)层中。 在一些阶段之间使用缓冲区排队,这有助于缓和CPU上的负载。 通过API层,无数视频分析应用程序可以访问和分析流经流水线的视频数据,并且可以基于所执行的分析来注释视频数据的一部分(例如,帧和帧组),其中描述 框架或组。 这些注释的帧和组流经管线到处理的后续阶段,在该阶段可以执行越来越复杂的分析。 在每个阶段,从视频数据中删除少量或不感兴趣的视频数据的部分。 最终,“事件”被构建并存储在数据库中,可以从该数据库中进行交叉事件和历史分析,并且可以进行与事件的关联以及事件之间的关联。