会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Static content addressable memory cell
    • 静态内容可寻址存储单元
    • US07269040B2
    • 2007-09-11
    • US11331889
    • 2006-01-12
    • Shane Ching-Feng Hu
    • Shane Ching-Feng Hu
    • G11C15/00
    • G11C15/043G11C15/04
    • A static content addressable memory (CAM) cell. The CAM cell includes a latch having complementary data nodes capacitively coupled to ground, first and second access transistors, each coupled between a data node of the latch and a respective data line. The gates of each access transistor is coupled to a word line such that when activated, the respective data node and data line are coupled. The CAM cell further includes a match circuit coupled to one of the complementary data nodes of the latch. The match circuit discharges a match line in response to a data value stored at the data node to which the match circuit is coupled and compare data present on the respective data line mismatching. Two of the CAM cells can be used to implement a full ternary CAM cell.
    • 静态内容可寻址存储器(CAM)单元。 CAM单元包括具有电容耦合到地的互补数据节点的锁存器,第一和第二存取晶体管,每个耦合在锁存器的数据节点和相应的数据线之间。 每个存取晶体管的栅极耦合到字线,使得当被激活时,相应的数据节点和数据线被耦合。 CAM单元还包括耦合到锁存器的互补数据节点之一的匹配电路。 匹配电路响应于与匹配电路耦合的数据节点存储的数据值放电匹配线,并比较存在于相应数据线不匹配的数据。 可以使用两个CAM单元来实现完整的三元CAM单元。
    • 4. 发明授权
    • Motion compensation performance improvement by removing redundant edge information
    • 通过删除冗余边缘信息来提高运动补偿性能
    • US06778604B1
    • 2004-08-17
    • US09186754
    • 1998-11-05
    • Shane Ching-Feng Hu
    • Shane Ching-Feng Hu
    • H04N732
    • H04N19/124H04N19/117H04N19/51
    • A motion compensation improvement for a compression encoder minimizes redundant edge information in a current image from a video input signal being input to the compression encoder. The current image is compared with a reference image from the video signal, which images may be the entire picture or a sub-region of the picture, to provide a spatial shift difference between the images, the spatial shift difference having an integer part and a high precision fractional part. From the high precision fractional part and specified constants for the compression encoder a shift value is calculated such that, when shifted, the current image is aligned with a quantizer motion vector grid in the compression encoder. The shift value is then used to resample the current image to make the desired shift prior to input to the compression encoder, thereby minimizing redundant edge information.
    • 用于压缩编码器的运动补偿改进使来自输入到压缩编码器的视频输入信号的当前图像中的冗余边缘信息最小化。 将当前图像与来自视频信号的参考图像进行比较,哪些图像可以是图像的整个图像或子区域,以提供图像之间的空间偏移差,具有整数部分的空间偏移差和 高精度分数部分。 根据压缩编码器的高精度分数部分和规定常数,计算偏移值,使得当移位时,当前图像与压缩编码器中的量化器运动矢量网格对准。 然后使用移位值对当前图像进行重新取样,以在输入到压缩编码器之前进行所需的移位,从而最小化冗余边缘信息。
    • 5. 发明授权
    • Adaptive multi-modal motion estimation for video compression
    • 用于视频压缩的自适应多模态运动估计
    • US06594397B1
    • 2003-07-15
    • US09518429
    • 2000-03-03
    • Shane Ching-Feng Hu
    • Shane Ching-Feng Hu
    • G06K936
    • H04N19/53G06T7/207H04N19/527H04N19/56H04N19/96
    • An adaptive multi-modal motion estimation algorithm for video compression builds a luminance pyramid for each image of a moving image sequence. From the top level image of the luminance pyramid a global motion vector is determined between images at times t and t+n. The global motion vector is used as a pivot point and to define a search area. For each block of a current top level image a search for a match is carried out around the pivot point within the search area. The resulting block motion vectors serve as initial conditions for the next higher resolution level. A refinement process results in a displaced frame difference value (DFD) for each block as an error measure. If the error measure is small, the motion vector is chosen as the motion vector for the current block. If the error measure is large, then a search within the search area around a zero motion pivot point is conducted. The motion vector that results in the smallest error measure is chosen as the motion vector for the current block. The refinement and zero pivot searches are repeated for each level down to the full resolution base of the pyramid, resulting in the desired estimated motion vectors for the image.
    • 用于视频压缩的自适应多模态运动估计算法为运动图像序列的每个图像建立亮度金字塔。 从亮度金字塔的顶级图像,在时间t和t + n的图像之间确定全局运动矢量。 全局运动矢量用作枢轴点并定义搜索区域。 对于当前顶级图像的每个块,搜索区域内的枢轴点周围进行匹配搜索。 所得到的块运动矢量用作下一较高分辨率水平的初始条件。 精化过程导致每个块的位移帧差值(DFD)作为误差测量。 如果误差测量小,则选择运动矢量作为当前块的运动矢量。 如果误差测量值较大,则在零运动枢轴点周围的搜索范围内进行搜索。 导致最小误差测量的运动矢量被选作当前块的运动矢量。 对于每个级别重复细化和零点搜索,直到金字塔的全分辨率基底,导致图像的期望的估计运动矢量。
    • 7. 发明授权
    • Automatic color constancy for image sensors
    • 图像传感器的自动色彩恒定
    • US07110598B2
    • 2006-09-19
    • US10228947
    • 2002-08-28
    • Shane Ching-Feng Hu
    • Shane Ching-Feng Hu
    • G06K9/00G06F13/00
    • G06T5/007G06T2207/10024G06T2207/10152
    • An electronic imaging system operates as closely as possible to the cone spectral response space to obtain a human eye-like long, medium, short (LMS) wavelength response. An input image, for example, red-green-blue (RGB), is transformed to an LMS color space similar to the human long-, middle-, and short-wavelength cone receptor responses. Adaptation levels for each LMS component are calculated. The adaptation levels are then used to adjust the sensitivity of each LMS sensor response to obtain an LMS component image. The LMS component image then is transformed back to an RGB component image for further processing or display.
    • 电子成像系统尽可能接近锥形光谱响应空间,以获得人眼长,中,短(LMS)波长响应。 输入图像,例如红 - 绿 - 蓝(RGB),被转换成类似于人类长,中,短波长锥体受体响应的LMS色彩空间。 计算每个LMS组件的适应度。 然后,适应级别用于调整每个LMS传感器响应的灵敏度以获得LMS分量图像。 然后将LMS分量图像转换回RGB分量图像以进一步处理或显示。
    • 8. 发明授权
    • Human vision based pre-processing for MPEG video compression
    • 基于人类视觉的MPEG视频压缩预处理
    • US06731815B1
    • 2004-05-04
    • US09518428
    • 2000-03-03
    • Shane Ching-Feng Hu
    • Shane Ching-Feng Hu
    • G06K936
    • H04N19/85H04N19/117H04N19/134H04N19/15H04N19/61H04N19/80
    • Human vision based pre-processing for MPEG video compression uses light intensity. An input video signal is input to a contrast gain control circuit where a Gaussian pyramid is constructed. The reduced pyramid image serves as a local light level. The reduced pyramid image also is processed to obtain a global light center. The difference between the local light level and the global light center is used as an index to a lookup table that provides a local gain control signal. The local gain control signal and a global gain control signal input to the contrast gain control circuit are used to multiply a Laplacian image derived from the input image, the resulting modified Laplacian image being subtracted from an equivalent lowpass filtered video image to produce a pre-processed output video signal having reduced bandwidth for input to an MPEG2 compressor.
    • 基于人类视觉的MPEG视频压缩预处理使用光强度。 输入视频信号被输入到构成高斯金字塔的对比度增益控制电路。 减少的金字塔图像用作局部光级。 减少的金字塔图像也被处理以获得全局光中心。 局部光级和全局光中心之间的差异被用作提供局部增益控制信号的查找表的索引。 输入到对比度增益控制电路的本地增益控制信号和全局增益控制信号用于乘以从输入图像导出的拉普拉斯算子图像,从等效低通滤波视频图像中减去所得到的修正拉普拉斯图像, 经处理的输出视频信号具有减小的带宽以输入到MPEG2压缩器。
    • 10. 发明授权
    • Automatic color constancy for image sensors
    • 图像传感器的自动色彩恒定
    • US07313273B2
    • 2007-12-25
    • US11137393
    • 2005-05-26
    • Shane Ching-Feng Hu
    • Shane Ching-Feng Hu
    • G06K9/00G06F13/00
    • G06T5/007G06T2207/10024G06T2207/10152
    • An electronic imaging system operates as closely as possible to the cone spectral response space to obtain a human eye-like long, medium, short (LMS) wavelength response. An input image, for example, red-green-blue (RGB), is transformed to an LMS color space similar to the human long-, middle-, and short-wavelength cone receptor responses. Adaptation levels for each LMS component are calculated. The adaptation levels are then used to adjust the sensitivity of each LMS sensor response to obtain an LMS component image. The LMS component image then is transformed back to an RGB component image for further processing or display.
    • 电子成像系统尽可能接近锥形光谱响应空间,以获得人眼长,中,短(LMS)波长响应。 输入图像,例如红 - 绿 - 蓝(RGB),被转换成类似于人类长,中,短波长锥体受体响应的LMS色彩空间。 计算每个LMS组件的适应度。 然后,适应级别用于调整每个LMS传感器响应的灵敏度以获得LMS分量图像。 然后将LMS分量图像转换回RGB分量图像以进一步处理或显示。