会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Anode for fuel cell, manufacturing method thereof, and fuel cell including the same
    • 燃料电池用阳极及其制造方法以及包含该阳极的燃料电池
    • US07910259B2
    • 2011-03-22
    • US11445340
    • 2006-06-02
    • Seol-ah LeeSeung-jae LeeChan-ho PakJi-rae KimDae-jong Yoo
    • Seol-ah LeeSeung-jae LeeChan-ho PakJi-rae KimDae-jong Yoo
    • H01M8/14
    • H01M4/8807H01M4/8605H01M4/8821H01M4/8828H01M4/92H01M4/928H01M8/0234H01M8/0245H01M2004/8684H01M2008/1095Y02P70/56
    • A method of manufacturing an anode for a fuel cell including: performing an acid treatment for a carbon-based compound; washing the resultant obtained from the acid treatment with water and then performing a freeze-drying (lyophilization) process; forming a microporous diffusion layer by dispersing the lyophilized resultant in a solvent, coating the dispersed resultant on a porous carbon support, and drying; and forming a catalyst layer on top of the microporous diffusion layer, an anode for a fuel cell obtained according to the method herein, and a fuel cell using the same. An anode having improved efficiency on liquid fuel diffusion can be obtained when using the fuel diffusion layer including the microporous diffusion layer formed of the carbon-based compounds obtained after an acid treatment and a freeze-drying process according to the present invention. A fuel cell having improved performance can be manufactured by using such an anode.
    • 一种制造燃料电池用阳极的方法,包括:对碳系化合物进行酸处理; 用水洗涤从酸处理得到的结果,然后进行冷冻干燥(冷冻干燥)处理; 通过将冻干的产物分散在溶剂中形成微孔扩散层,将分散的产物涂布在多孔碳载体上并干燥; 以及在微多孔扩散层的顶部形成催化剂层,根据本文方法得到的燃料电池用阳极和使用该催化剂的燃料电池。 当使用包括由根据本发明的酸处理和冷冻干燥处理之后获得的碳基化合物形成的微孔扩散层的燃料扩散层时,可以获得提高液体燃料扩散效率的阳极。 可以通过使用这种阳极来制造具有改进性能的燃料电池。
    • 7. 发明申请
    • Supported catalyst, method of preparing the same, and fuel cell using the same
    • 负载催化剂,其制备方法和使用其的燃料电池
    • US20070270305A1
    • 2007-11-22
    • US11708600
    • 2007-02-21
    • Chan-ho PakDae-jong YooSang-hoon JooHyuk ChangSeol-ah Lee
    • Chan-ho PakDae-jong YooSang-hoon JooHyuk ChangSeol-ah Lee
    • B01J31/00
    • H01M4/926H01M4/8657H01M4/8814H01M4/885H01M4/92H01M4/921H01M8/1007H01M8/1011Y02E60/523Y02P70/56
    • A method of preparing a supported catalyst, the method comprising mixing a first catalytic metal precursor and a first solvent to obtain a first catalytic metal precursor mixture; mixing a carbon support for catalyst and the first catalytic metal precursor mixture, and drying the mixture to obtain a primary supported catalyst precursor; subjecting the primary supported catalyst precursor to a hydrogen reduction heat treatment, to obtain a primary supported catalyst; mixing the primary supported catalyst and a polyhydric alcohol to obtain a primary supported catalyst mixture; mixing a second catalytic metal precursor and a second solvent to obtain a second catalytic metal precursor mixture; mixing the primary supported catalyst mixture and the second catalytic metal precursor mixture to obtain a secondary supported catalyst precursor mixture; and adjusting the pH of the secondary supported catalyst precursor mixture, and then heating the secondary supported catalyst precursor mixture to obtain a supported catalyst, a supported catalyst prepared by the method, an electrode comprising the supported catalyst, and a fuel cell including the electrode are provided. A supported catalyst having a desired amount of loaded catalytic metal particles can be obtained by preparing a primary supported catalyst containing catalytic metal particles that are obtained by a primary gas phase reduction reaction of a portion of the final loading amount of catalytic metal, and reducing the remaining portion of the catalytic metal by a secondary liquid phase reduction reaction. The supported catalyst contains catalytic metal particles having a very small average particle size, which are uniformly distributed on a carbon support at a high concentration, and thus exhibits maximal catalyst activity. A fuel cell produced using the supported catalyst has improved efficiency.
    • 一种制备负载型催化剂的方法,所述方法包括混合第一催化金属前体和第一溶剂以获得第一催化金属前体混合物; 混合催化剂用碳载体和第一催化金属前体混合物,干燥混合物得到主要负载型催化剂前体; 对初级负载催化剂前体进行氢还原热处理,得到主要负载型催化剂; 将主要负载型催化剂和多元醇混合,得到主要负载型催化剂混合物; 混合第二催化金属前体和第二溶剂以获得第二催化金属前体混合物; 将主要负载的催化剂混合物和第二催化金属前体混合物混合,得到二次负载催化剂前体混合物; 调节二次负载型催化剂前体混合物的pH,然后加热二次负载型催化剂前体混合物,得到负载型催化剂,通过该方法制备的负载催化剂,包含负载型催化剂的电极和包含该电极的燃料电池 提供。 具有所需量的负载的催化金属颗粒的负载型催化剂可以通过制备含有催化金属颗粒的主负载催化剂获得,所述催化金属颗粒是通过催化金属的最终负载量的一部分一次气相还原反应获得的, 催化金属的剩余部分通过二次液相还原反应。 载体催化剂含有平均粒径非常小的催化金属颗粒,其以高浓度均匀分布在碳载体上,因此表现出最大的催化剂活性。 使用负载型催化剂制造的燃料电池具有提高的效率。