会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Nanopore based ion-selective electrodes
    • 基于纳米孔的离子选择性电极
    • US08123922B2
    • 2012-02-28
    • US11852061
    • 2007-09-07
    • Henry S. WhiteRyan J. WhiteRichard B. BrownHakhyun NamJun Ho Shim
    • Henry S. WhiteRyan J. WhiteRichard B. BrownHakhyun NamJun Ho Shim
    • G01N27/333
    • G01N27/333Y10T156/10
    • Nanopore based ion-selective electrodes and methods of their manufacture as well as methods for their use are disclosed and described. The nanopore based ion-selective electrode can include a pore being present in a solid material and having a nanosize opening in the solid material, a metal conductor disposed inside the pore opposite the opening in the solid material, a reference electrode material contacting said metal conductor and disposed inside the pore, a conductive composition in contact with the reference electrode and disposed in the pore, and an ion-selective membrane. The ion-selective membrane can be configured to isolate the metal conductor, reference electrode material, and conductive composition together within the pore.
    • 公开和描述了基于纳米孔的离子选择性电极及其制造方法及其使用方法。 基于纳米孔的离子选择性电极可以包括存在于固体材料中并在固体材料中具有纳米尺寸开口的孔,设置在与固体材料中的开口相对的孔内的金属导体,与金属导体接触的参考电极材料 并且设置在孔内,与参考电极接触并设置在孔中的导电组合物和离子选择性膜。 离子选择性膜可以被配置为在孔内将金属导体,参比电极材料和导电组合物隔离在一起。
    • 5. 发明授权
    • Nanopore platforms for ion channel recordings and single molecule detection and analysis
    • 用于离子通道记录和单分子检测和分析的纳米孔平台
    • US08581605B2
    • 2013-11-12
    • US12827503
    • 2010-06-30
    • Henry S WhiteRyan J WhiteEric N Ervin
    • Henry S WhiteRyan J WhiteEric N Ervin
    • G01R27/08G01R31/08
    • G01N33/48721B82Y15/00Y10T428/249979
    • A nanopore device includes a membrane having a nanopore extending there through forming a channel from a first side of the membrane to a second side of the membrane. The surface of the channel and first side of the membrane are modified with a hydrophobic coating. A first lipid monolayer is deposited on the first side of the membrane, and a second lipid monolayer is deposited on the second side of the membrane, wherein the hydrophobic coating causes spontaneous generation of a lipid bilayer across the nanopore orifice. Sensing entities, such as a protein ion channel, can be inserted and removed from the bilayer by adjusting transmembrane pressure, and adapter molecules can be electrostatically trapped in the ion channel by applying high transmembrane voltages, while resistance or current flow through the sensing entity can be measured electrically.
    • 纳米孔装置包括具有通过形成从膜的第一侧到膜的第二侧的通道在其上延伸的纳米孔的膜。 通道的表面和膜的第一侧用疏水涂层改性。 第一脂质单层沉积在膜的第一侧上,并且第二脂质单层沉积在膜的第二侧上,其中疏水涂层引起在纳米孔孔上自发产生脂质双层。 通过调节跨膜压力,可以将传感实体(如蛋白质离子通道)从双层插入和移出,并且通过施加高跨膜电压,衔接子分子可以静电捕获在离子通道中,而通过感测实体的电阻或电流可以 被电测量。
    • 8. 发明申请
    • NANOPORE PLATFORMS FOR ION CHANNEL RECORDINGS AND SINGLE MOLECULE DETECTION AND ANALYSIS
    • 用于离子通道记录的NANOPORE平台和单分子检测和分析
    • US20080218184A1
    • 2008-09-11
    • US11743472
    • 2007-05-02
    • Henry S. WhiteRyan J. WhiteEric N. Ervin
    • Henry S. WhiteRyan J. WhiteEric N. Ervin
    • G01N27/06B32B3/26H01T14/00
    • G01N33/48721B82Y15/00Y10T428/249979
    • Chemical modification of a glass and fused silica nanopore surfaces results in surface properties that are ideal for localized bilayer formation over a nanopore and subsequent ion channel recording. With no surface modification, one may form a bilayer supported on the glass capillary extending across the nanopore orifice. Changing the surface properties from that of bare glass to a moderately hydrophobic surface produces a lipid monolayer above the glass and spontaneously yields a bilayer across the nanopore orifice, effectively corralling a single protein ion channel in the lipid bilayer region spanning nanopore orifice. The bilayer structure over the modified nanopore is such that current can only flow through the protein ion channel. The protein ion channel is able to diffuse in the bilayer above the pore opening, but cannot leave this area to enter the lipid monolayer. The bilayer formed across the nanopore orifice exhibits high electrical breakdown voltage, is stable to mechanical vibrations, and is long lived. Resistance through the protein channel can be measured electrically and is exploited for stochastic single-molecule detection. Protein ion channels can be inserted and removed from the bilayer by adjusting transmembrane pressure, and adapter molecules can be electrostatically trapped in the ion channel by applying high transmembrane voltages.
    • 玻璃和熔融二氧化硅纳米孔表面的化学修饰导致表面性质,对于纳米孔上的局部双层形成和随后的离子通道记录是理想的。 没有表面改性,可以形成支撑在玻璃毛细管上延伸穿过纳米孔孔的双层。 将表面性质从裸玻璃的表面特性改变为适度疏水的表面在玻璃上方产生脂质单层,并自发产生穿过纳米孔孔的双层,有效地将跨越纳米孔孔的脂质双层区域中的单个蛋白质离子通道。 改性纳米孔上的双层结构使得电流只能流过蛋白质离子通道。 蛋白质离子通道能够在孔开口上方的双层扩散,但不能离开该区域进入脂质单层。 跨纳米孔孔形成的双层表现出高的电击穿电压,对于机械振动是稳定的,并且寿命长。 通过蛋白质通道的电阻可以被电测量并用于随机单分子检测。 蛋白质离子通道可以通过调节跨膜压力从双层插入和移除,并且衔接分子可以通过施加高跨膜电压被静电捕获在离子通道中。